MAT A29: Week 10 Winter 2025

Week 10: The Fundamental Theorem of Calculus and Anti-Derivatives

Remark: Riemann Sums Are Hard

Last week, we introduced the machinery of Riemann sums. They are hard to calculate because we need
a special formula for each sum. This week, we introduce a fundamental tool for calculating them which
simplifies the process of computing areas.

If f(z) is a nice function on [a, b] then:

b
L ie=10)- 100

Note: Our textbook calls this “Theorem 5.6: The Net Change Theorem”.
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MAT A29: Week 8 Winter 2025

The equation % = f(z) can be re-written as:

dy = f'(z)dz

The terms dy and dz are differentials.
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Calculate Ay and dy when y = 2% + 2z, z = 3, and dz = 0.1
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MAT A29: Week 10 Winter 2025

Find the area bounded by y = 22, y = 0, and = = lusing the Fundamental Theorem of Calculus.
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MAT A29: Week 10 Winter 2025
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MAT A29: Week 10 Winter 2025

Remark: Integration Requires Us to Undo Differentiation

To apply the Fundamental Theorem of Calculus to a given formula:

[fors - |Pon

dF
we need to write i(:v) T for some F'(z). This means that we need to undo the process of differentiation.

We say that F(z) is an antiderivative of f(z) if F'(z) = f().
Note: What does F(z) do? It is a function with slope ?(m)

Check that Fy(z) = sin(z) and Fy(z) = sin(z) + 10 are both antiderivatives of f(z) = cos(z).
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MAT A29: Week 10 Winter 2025

Which of the following is an antiderivative of f(z) = e*/2? Circle all correct answers.
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MAT A29: Week 10 Winter 2025

We write: / fla)de = F(z) + C to express “F(z) is an antiderivative of f(z)”. The term +C is called the

constant of integration. The term / f (z)dz is called an indefinite integral. If have definite bounds,

we get a definite integral:

/f = F(3) - F(o)
We have the following relations: A [ ]

D [r@do =k [ )
(D) [ 1)+ p@yio= [ @i+ [ pais
(D) [ 5~ = [ e~ [ e

(V) T4 9&?] [ o ()*[Kr]
T ta i

\LS O ) ¢S g

v
|
S
A
]
|

kA

‘\ﬁ
([
N

(©) Parker Glynn-Adey (Winter 2025) p. 111 Version: 1.0






MAT A29: Week 10 Winter 2025

If n # —1 then we have: /mn de = nLHan +C. (We’ll handle n = —1 soon.)
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MAT A29: Week 10 Winter 2025

The chain rule corresponds to the following antiderivative rule.

[ #o@)d@ide = [ £ (o(e) +C

Note: This process is often called u-substitution.

Adjust the integrand as necessary to apply the substitution u = 42249 and calculate the indefinite integral.
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MAT A29: Week 10

Winter 2025

Remark: Every Derivative Rule Is Also An Antiderivative Rule

We can convert any derivative rule in to an anti-derivative by reversing the sides of the equality.

d
dx

9 F@)] = f(z) <= / f(z) dz = F(z) + C

| # Activity: Class Discussion (5 min)

l

l Produce a table of “anti-derivative rules”. (Think about stuff like trigonometry, exponentials, etc.) J
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MAT A29: Week 10 Winter 2025

Evaluate the following definite integral. Change the bounds apprognately when applying substitution.
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MAT A29: Week 10 Winter 2025

Remark: Reversing The Product Rule

So far, we’ve seen that every derivative rule has a corresponding antiderivative rule. The chain rule becomes
substitution. Now, we begin to reverse the sense of the product rule. Notice what this lets us go: We can
exchange an integral f’g for fg’. This lets us “move the difficulty of the integral around”.

The product rule gives us the following;:

ZUa=Fo+ 59 [ fot1d da=gor0

\/—'v
We rarely have such a nice integrand, and so we re-arrange to get:

[fod=to- [ 14 ds+c

1
Calculate the following antiderivative: / ze® dz.
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MAT A29: Week 10 Winter 2025

Which parts should we choose for the following: / z%1n(z) dz?

(Don’t evaluate the integral, just determine a good choice of parts.)
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/ In(z) dz
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MAT A29: Week 10 Winter 2025

|2 5%
- % Activity: Which Method? (3 min)

Consider the following indefinite integrals. Which method would you try first?
(You don’t need to evaluate the indefinite integral. Just pick a tool and say how you’d apply it.)
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Currently our methods are: direct, substitution, or parts.
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MAT A29: Week 8 Winter 2025

Remark: Linear Approximations

Now we're going to go on a quick detour through the land of linear approximations. This is really just
taking a tangent line. Nothing new here. This detour is a refresher to provide context for differentials.

The linear approximation to f(z) at z = a is:

Notice:

e This is the point-slope format of a line.
e The line has slope man = f'(a).
e The line passes through (a, f(a)).

% Activity: Try It Out (2 min) (..."

Find the tangent line of f(z) = /z at a = 4.
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MAT A29: Week 8 Winter 2025

Use the tangent line y = %:L' +1 of y = /z at a = 4 to approximate 1/4.01.
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