

Question: Building a Sign Chart
Suppose that $f'(x) = 2x^2(2x - 9)$. Find the locations of all local extrema.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
of f(x) # Find the critical points. $f'(x) = 2x^2(2x-9) = 0 \implies x=0 \text{ or } x=\frac{9}{2}$. $f'(x) = 2x^2(2x-9) = 0 \implies x=0 \text{ or } x=\frac{9}{2}$. # create intervals between critical points. $f(x) = \frac{1}{2}(x-9) = 0 \implies x=0, \text{ or } x=\frac{9}{2}$.
view the product test points. $-1 \in (-1, 0) \Rightarrow f'(-1) = -22 \times 0$ $-1 \in (-1, 0) \Rightarrow f'(-1) = -14 \times 0$ $e_{0} = f'(-1) = -14 \times 0$ $e_{0} = f(-1) = f(-1) = -14 \times 0$ $e_{0} = f(-1) = f(-1) = -14 \times 0$ $e_{0} = -$
Problem-Solving Process: 1062 MINIMUM

Problem-Solving Process:

- Create intervals using the critical points x = c.
- Pick a "test point" in each interval.
- Evaluate the derivative at the test point.
- Conclude whether f(x) is increasing / decreasing on each interval.
- Form a chart of this information.

We need some new vocabulary!

Definition: Higher Derivatives

If f(x) is a function then f'(x) is its first derivative. $rac{f'}{f'(x)} = f'(x)$ also a function! The second derivative of f(x) is:

$$f''(x) = \frac{d}{dx} \left[f'(x) \right] =$$
 "the derivative of the first derivative"

We can also write:

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right]$$

In general, the n'th derivative is:

$$f^{(n)}(x) = \frac{d^n y}{dx^n}$$

Definition: Concavity

If f' is increasing, then we say that f is concave up. If f' is decreasing, then we say that f is concave down.

Theorem: Second Derivatives Detect Concavity

If f'' > 0 then f is concave up. If f'' < 0 then f is concave down. Warning: f''(a) = 0 does not imply a change of concavity. $y = x^4$ has $\frac{d^2y}{dx^2} = 4 \cdot 3 \cdot x^2 = 0$ at x = 0 but $y = x^4$ is always concave up.

OpenStax p. 395

© Parker Glynn-Adey (Winter 2025)

Example: A Curve Sketch!

Sketch the graph of $f(x) = x^3 - 3x$.

Find the x and y intercepts.
Find the critical points of
$$f(x)$$
. $(x - intercept)$, $x^3 - 3x = 0 \not\in 3$, $x(x^2 - 3) = 0$
Make a sign chart for $f'(x)$.
Classify the critical points.
(riftical points:
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \implies x = -1 \text{ or } x = 1$
 $f'(x) = 3(x^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(-10) = 3((-10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(10) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$
 $f'(x) = 3((10)^2 - 1) = 3 \cdot 99 = 297 = 0$

- Second derivative test
- Sign charts

