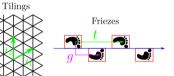
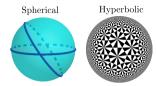
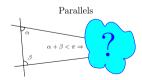
MAT 402: Classical Geometry

Platonic Solids



Coxeter





From La Encyclopédie (1772) by Diderot and d'Alembert. Welcome to continuous geometry. Questions? Comments?

MAT 402: Monday November 2nd 2020

Learning Objectives:

- Compare and contrast Euclidean and Spherical geometry.
- > Prove analogues of theorems in planar geometry on the sphere.

Spherical Geometry

Definition

Spherical geometry is $(S^2 : O(3))$ where $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ and O(3) is the orthogonal group. (Alternatively, O(3) is the isometries of \mathbb{R}^3 which send the origin to itself.)

Question

What is the difference between SO(3) and O(3)?

Geodesics

Definition

A geodesic is a length minimizing path.

Question

What are the geodesics in standard Euclidean geometry? How would you prove that they are length minimizing?

Polygonal Chains

Definition

A polygonal chain from p to q is a collection of distinct points $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$ with $p = P_0$ and $q = P_n$ joined by line segments $[P_i, P_{i+1}]$ for $i = 0, \dots, n-1$. The length of \mathcal{P} is $||\mathcal{P}|| = \sum_{i=0}^{n-1} d(P_i, P_{i+1})$.

Task

Use the triangle inequality to show that the shortest polygonal chain between two points in \mathbb{R}^2 is a straight line.

Geodesics

Definition

A geodesic is a length minimizing path.

Question

What are the geodesics in standard Euclidean geometry?

Geodesics

Definition

A great circle is $C = S^2 \cap \Pi$ where Π is a plane passing through (0, 0, 0).

Theorem

The geodesics of S^2 are great circles. (For example, longitudes or the equator.)

Distance

Definition

The distance between a pair of points $u, v \in S^2$ is the angle between their vectors:

$$d(u,v) = \cos^{-1}(\vec{u} \cdot \vec{v})$$

Task

What are the spherical distances between a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1)?

Pythagoras

Theorem (6.5.2 p. 120)

If ABC is a spherical right angled triangle with side-lengths $\{a, b, c\}$ and a right angle at C then:

 $\cos(c)=\cos(a)\cos(b)$