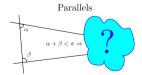
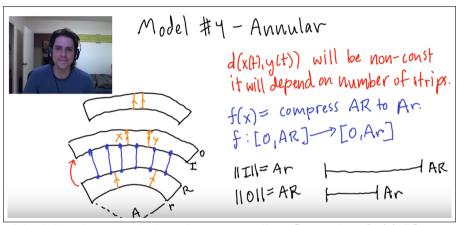
MAT 402: Classical Geometry

$$\operatorname{Symm}(\Box) = \langle r, s : r^2 = s^2 = (rs)^4 = e \rangle$$

Trigonometry

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$





Model #4 extended to have zero line Saturday @ 11:59am. Questions? Comments?

MAT 402: Friday November 6th 2020

Learning Objectives:

- Prove analogues of theorems in planar geometry on the sphere.
- ► Calculate the area of spherical biangles and triangles.

Pythagoras

Theorem (6.5.2 p. 120)

If ABC is a spherical right angled triangle in $\mathbb{S}^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ with side-lengths $\{a, b, c\}$ and a right angle at C then:

$$\cos(c) = \cos(a)\cos(b)$$

Task

How can we generalize this to $\mathbb{S}^2(R)$ a sphere of radius R?

Pythagoras on Spheres to Pythagoras on the Plane

Task

Given that $\cos(c/R) = \cos(a/R)\cos(b/R)$ in a right angled triangle on $\mathbb{S}^2(R)$, how can we recover the usual Pythagorean theorem $c^2 = a^2 + b^2$ in the plane \mathbb{R}^2 ?

Biangles

Definition (6.1)

A biangle S_{α} is a polygon on a sphere formed by two great circles that meet at angle α . The area of a biangle is $Area(S_{\alpha}) = 2\alpha$.

Task

What is the area of \mathbb{S}^2 ?

Girard's Theorem

Theorem (6.4.5 Girard \sim 1600 AD)

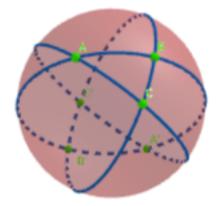
The area of a spherical triangle with angles $\{\alpha, \beta, \gamma\}$ is $S_{ABC} = \alpha + \beta + \gamma - \pi$.

Task

What is the area of the triangle with angles $\{\pi/2, \pi/2, \pi/2\}$?

Which tiling of the sphere do we get from it?

Girard's Theorem



https://www.geogebra.org/m/cqekqfrw

Covering with Biangles

Definition

We write B_{BAC} for the biangle at angle A with edges AB and AC.

Definition

The anti-podal triangle A'B'C' is formed by extending the edges of ABC.

Task

Which biangles contain the triangle ABC? Does their union cover the sphere?

The Proof of Girard's Theorem

We obtain: $Area(ABC) = \alpha + \beta + \gamma - \pi$.

$$4\pi = B_{BAC} + B_{ACB} + B_{CBA} + B_{B'A'C'} + B_{A'C'B'} + B_{C'B'A'} -2Area(ABC) - 2Area(A'B'C')$$

$$= B_{BAC} + B_{ACB} + B_{CBA} + B_{B'A'C'} + B_{A'C'B'} + B_{C'B'A'} - 4Area(ABC)$$

$$= 2\alpha + 2\gamma + 2\beta + 2\alpha + 2\gamma + 2\beta - 4Area(ABC)$$

$$= 4(\alpha + \beta + \gamma) - 4Area(ABC)$$