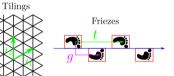
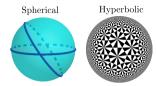
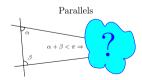
MAT 402: Classical Geometry

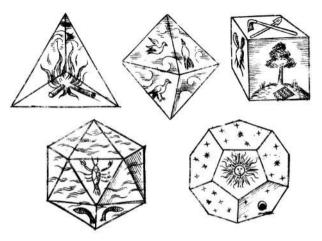
Platonic Solids



Coxeter







Kepler's drawings of the Platonic solids

Any question about the proof so far? Homework? Comments?

From Last Lecture

Theorem

If $G^+ \subset SO(3)$ is a finite and A contains a point from each orbit, then:

$$2 - \frac{2}{|G^+|} = \sum_{a \in A} \left(1 - \frac{1}{|\operatorname{St}(a)|} \right)$$

The Case |A| = 2

Let
$$A = \{a_1, a_2\}$$
. We have:

$$2 - \frac{2}{|G^+|} = \left(1 - \frac{1}{|\operatorname{St}(a_1)|}\right) + \left(1 - \frac{1}{|\operatorname{St}(a_2)|}\right) \Longleftrightarrow \frac{2}{|G^+|} = \frac{1}{|\operatorname{St}(a_1)|} + \frac{1}{|\operatorname{St}(a_2)|}$$

Multiplying through by $|G^+|$ we get:

$$2 = \frac{|G^+|}{|\operatorname{St}(a_1)|} + \frac{|G^+|}{|\operatorname{St}(a_2)|} = |\operatorname{Orb}(a_1)| + |\operatorname{Orb}(a_2)$$

We can conclude: $|\operatorname{Orb}(a_1)| = |\operatorname{Orb}(a_2)| = 1$.

Task

What symmetric objects have this property? What is the corresponding symmetry group? The Case |A| = 3Let $A = \{a_1, a_2, a_3\}$. We have: $2 - \frac{2}{|G^+|} = \left(1 - \frac{1}{|\operatorname{St}(a_1)|}\right) + \left(1 - \frac{1}{|\operatorname{St}(a_2)|}\right) + \left(1 - \frac{1}{|\operatorname{St}(a_3)|}\right)$ $\frac{2}{|G^+|} = \frac{1}{|\operatorname{St}(a_1)|} + \frac{1}{|\operatorname{St}(a_2)|} + \frac{1}{|\operatorname{St}(a_3)|} - 1$

Task (2 min)

Check the tetrahedral case: $|St(a_1)| = |St(a_2)| = 3$, and $|St(a_3)| = 2$, with $|G^+| = |Symm^+(\Delta)| = 12$

Task (2 min)

Check the cubical case: $|St(a_1)| = 2$, $|St(a_2)| = 3$, and $|St(a_3)| = 4$, with $|G^+| = |Symm^+(I^3)| = 24$

The Case |A| = 3 continued

Notice that because the left hand side $\frac{2}{|G^+|} > 0$ is positive we have:

$$\frac{1}{|\operatorname{St}(a_1)|} + \frac{1}{|\operatorname{St}(a_2)|} + \frac{1}{|\operatorname{St}(a_3)|} > 1$$

Task (2 min)

Show (arithmetically) that $2 \in {St(a_1), St(a_2), St(a_3)}$.

Task (15 min)

Let $|St(a_1)| = X$, $|St(a_2)| = Y$ and $|St(a_3)| = Z$. Find all possible sizes of $X \le Y \le Z$ such that the inequality holds.

Group Orders

We have that $\{2, 2, n\}$, $\{2, 3, 3\}$, $\{2, 3, 4\}$, and $\{2, 3, 5\}$ are the only possible sizes of stabilizers when |A| = 3.

Task (10 min)

Use the fundamental equation to determine the order of the groups.

$$2 - \frac{2}{|G^+|} = \sum_{a \in A} \left(1 - \frac{1}{|\operatorname{St}(a)|} \right)$$

The Final Classification

$St(a_1)$	$St(a_2)$	$St(a_3)$	G^+	Symmetric Object
n	n		п	<i>n</i> -gonal pyramid
2	2	п	2 <i>n</i>	<i>n</i> -gonal bi-pyramid
2	3	3	12	Tetrahedron
2	3	4	24	Cube/Octohedron
2	3	5	60	Dodecahedron/Icosahedron