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News Flash: Feedback #1 is out! Quest 1 is available.

Platonic Perplexer by David Nacin
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MAT 402: Monday September 28th 2020

Learning Objectives:

I Relate the order of a rotational pole to the size of G+ ⊂ SO(3)

I Explain the geometric significance of orbits and stabilizers in R3.
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Rotational Symmetries of the Cube

Task (10 min)

There are 24 rotational symmetries of the cube.
What are the orders of these symmetries? Provide examples.

To play with the cube: https://www.geogebra.org/m/Fdb6Mq6v
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Rotational Symmetries of the Cube

Question (10 min)

Suppose a pole p of a rotational symmetry of the cube has order k.
How does the size of the orbit of p relate to k?

To play with the cube: https://www.geogebra.org/m/Fdb6Mq6v
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Cosets

Definition

If H ⊆ G is a subgroup then a coset of H is Hg = {hg : h ∈ H}.
We write H + g if the operation on G is addition.

Task

Find all distinct cosets of H = {0, 2, 4} ⊂ Z6.
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Cosets

Theorem

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any
two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hgi and Hgj are two H cosets.

The map f (x) = is a bijection.

(2) If g ∈ Hgi ∩ Hgj 6= ∅ then g = h1gi = h2gj thus, gj = h−1
2 h1gi

?
= hgi .

We then have Hgj = H(hgi )
?
= Hgi .

The equalities ? hold because .

7 / 1



Cosets

Theorem

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any
two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hgi and Hgj are two H cosets.

The map f (x) = is a bijection.

(2) If g ∈ Hgi ∩ Hgj 6= ∅ then g = h1gi = h2gj thus, gj = h−1
2 h1gi

?
= hgi .

We then have Hgj = H(hgi )
?
= Hgi .

The equalities ? hold because .

7 / 1



Cosets

Theorem

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any
two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hgi and Hgj are two H cosets.

The map f (x) = is a bijection.

(2) If g ∈ Hgi ∩ Hgj 6= ∅ then g = h1gi = h2gj thus, gj = h−1
2 h1gi

?
= hgi .

We then have Hgj = H(hgi )
?
= Hgi .

The equalities ? hold because .

7 / 1



Cosets

Theorem

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any
two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hgi and Hgj are two H cosets.

The map f (x) = is a bijection.

(2) If g ∈ Hgi ∩ Hgj 6= ∅ then g = h1gi = h2gj thus, gj = h−1
2 h1gi

?
= hgi .

We then have Hgj = H(hgi )
?
= Hgi .

The equalities ? hold because .

7 / 1



Cosets

Theorem

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any
two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hgi and Hgj are two H cosets.

The map f (x) = is a bijection.

(2) If g ∈ Hgi ∩ Hgj 6= ∅ then g = h1gi = h2gj thus, gj = h−1
2 h1gi

?
= hgi .

We then have Hgj = H(hgi )
?
= Hgi .

The equalities ? hold because .

7 / 1



Stabilizer Cosets

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets {St(p)g1, . . . ,St(p)gq}
then: (i) p St(p)gi is unique, (ii) p St(p)gi is distinct for each i ∈ {1, . . . , q}.

Proof.

(i) Pick an element s ∈ St(p) we calculate psgi = pgi .
We get that: p St(p)gi is unique for any choice of s ∈ St(p).

(ii) Suppose two cosets send p to the same place.
If p St(p)gi = p St(p)gj then pgi = pgj by uniqueness (i).
Thus, p = pgjgi

−1 = p(gjg
−1
i ) and gjg

−1
i ∈ St(p) stabilizes p.

It follows St(p) = St(p)gjg
−1
i because St(p) is a subgroup.

Therefore, multiplying by gi , we get that the cosets are identical:

St(p)gi = St(p)gj
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Fixed Point Counting

Theorem

If p is the pole of an element T ∈ G+ ⊂ SO(3) of maximal order k and |G+| = n
then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

G+/St(p) = {St(p)g1,St(p)g2, . . . ,St(p)gq}

where q = n/k . The elements {g1 . . . gq} must send p to distinct places. If pgi = pgj
for i 6= j then pgig

−1
j = p. Thus, gig

−1
j ∈ St(p) and the cosets St(p)gi and St(p)gj

are equal. Therefore, we conclude |Orb(p)| = q = n/k .

Task (10 min)

What does this tell us about the poles of rotation of the cube?
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