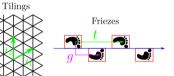
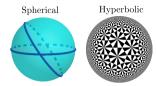
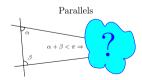
MAT 402: Classical Geometry

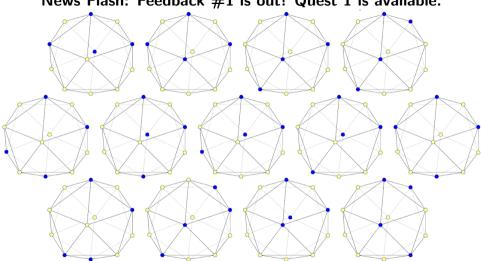
Platonic Solids



Coxeter







News Flash: Feedback #1 is out! Quest 1 is available.

Platonic Perplexer by David Nacin

MAT 402: Monday September 28th 2020

Learning Objectives:

- ▶ Relate the order of a rotational pole to the size of $G^+ \subset SO(3)$
- Explain the geometric significance of orbits and stabilizers in \mathbb{R}^3 .

Rotational Symmetries of the Cube

Task (10 min)

There are 24 rotational symmetries of the cube. What are the orders of these symmetries? Provide examples.

To play with the cube: <code>https://www.geogebra.org/m/Fdb6Mq6v</code>

Rotational Symmetries of the Cube

Question (10 min)

Suppose a pole p of a rotational symmetry of the cube has order k. How does the size of the orbit of p relate to k?

To play with the cube: <code>https://www.geogebra.org/m/Fdb6Mq6v</code>

Definition

If $H \subseteq G$ is a subgroup then a coset of H is $Hg = \{hg : h \in H\}$. We write H + g if the operation on G is addition.

Definition

If $H \subseteq G$ is a subgroup then a coset of H is $Hg = \{hg : h \in H\}$. We write H + g if the operation on G is addition.

Task

Find all distinct cosets of $H = \{0, 2, 4\} \subset \mathbb{Z}_6$.

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any two H cosets are equal or disjoint.

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any two H cosets are equal or disjoint.

Proof.

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hg_i and Hg_j are two H cosets.

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hg_i and Hg_j are two H cosets.

The map f(x) = is a bijection.

If H is a subgroup of G then: (i) all H cosets have the same cardinality and (ii) any two H cosets are equal or disjoint.

Proof.

(i) Suppose that Hg_i and Hg_j are two H cosets.

The map f(x) = is a bijection.

(2) If $g \in Hg_i \cap Hg_j \neq \emptyset$ then $g = h_1g_i = h_2g_j$ thus, $g_j = h_2^{-1}h_1g_i \stackrel{*}{=} hg_i$. We then have $Hg_j = H(hg_i) \stackrel{*}{=} Hg_i$.

The equalities \star hold because

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $p St(p)g_i$ is unique, (ii) $p St(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $p St(p)g_i$ is unique for any choice of $s \in St(p)$.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $pSt(p)g_i$ is unique for any choice of $s \in St(p)$.

(ii) Suppose two cosets send p to the same place.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $p St(p)g_i$ is unique for any choice of $s \in St(p)$.

(ii) Suppose two cosets send p to the same place. If $p \operatorname{St}(p)g_i = p \operatorname{St}(p)g_j$ then $pg_i = pg_j$ by uniqueness (i).

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $p St(p)g_i$ is unique, (ii) $p St(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $p St(p)g_i$ is unique for any choice of $s \in St(p)$.

(ii) Suppose two cosets send p to the same place. If $p \operatorname{St}(p)g_i = p \operatorname{St}(p)g_j$ then $pg_i = pg_j$ by uniqueness (i). Thus, $p = pg_jgi^{-1} = p(g_jg_i^{-1})$ and $g_jg_i^{-1} \in \operatorname{St}(p)$ stabilizes p.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $pSt(p)g_i$ is unique for any choice of $s \in St(p)$.

(ii) Suppose two cosets send p to the same place. If $p \operatorname{St}(p)g_i = p \operatorname{St}(p)g_j$ then $pg_i = pg_j$ by uniqueness (i). Thus, $p = pg_jgi^{-1} = p(g_jg_i^{-1})$ and $g_jg_i^{-1} \in \operatorname{St}(p)$ stabilizes p. It follows $\operatorname{St}(p) = \operatorname{St}(p)g_jg_i^{-1}$ because $\operatorname{St}(p)$ is a subgroup.

Lemma

If p is a point and St(p) is its stabilizer subgroup with cosets $\{St(p)g_1, \ldots, St(p)g_q\}$ then: (i) $pSt(p)g_i$ is unique, (ii) $pSt(p)g_i$ is distinct for each $i \in \{1, \ldots, q\}$.

Proof.

(i) Pick an element $s \in St(p)$ we calculate $psg_i = pg_i$. We get that: $pSt(p)g_i$ is unique for any choice of $s \in St(p)$.

(ii) Suppose two cosets send p to the same place. If $p \operatorname{St}(p)g_i = p \operatorname{St}(p)g_j$ then $pg_i = pg_j$ by uniqueness (i). Thus, $p = pg_jgi^{-1} = p(g_jg_i^{-1})$ and $g_jg_i^{-1} \in \operatorname{St}(p)$ stabilizes p. It follows $\operatorname{St}(p) = \operatorname{St}(p)g_jg_i^{-1}$ because $\operatorname{St}(p)$ is a subgroup. Therefore, multiplying by g_i , we get that the cosets are identical:

$$\operatorname{St}(p)g_i = \operatorname{St}(p)g_j$$

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = \{\operatorname{St}(p)g_1,\operatorname{St}(p)g_2,\ldots,\operatorname{St}(p)g_q\}$$

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = \{\operatorname{St}(p)g_1,\operatorname{St}(p)g_2,\ldots,\operatorname{St}(p)g_q\}$$

where q = n/k.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = {\operatorname{St}(p)g_1, \operatorname{St}(p)g_2, \ldots, \operatorname{St}(p)g_q}$$

where q = n/k. The elements $\{g_1 \dots g_q\}$ must send p to distinct places.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = \{\operatorname{St}(p)g_1, \operatorname{St}(p)g_2, \dots, \operatorname{St}(p)g_q\}$$

where q = n/k. The elements $\{g_1 \dots g_q\}$ must send p to distinct places. If $pg_i = pg_j$ for $i \neq j$ then $pg_ig_j^{-1} = p$.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = {\operatorname{St}(p)g_1, \operatorname{St}(p)g_2, \dots, \operatorname{St}(p)g_q}$$

where q = n/k. The elements $\{g_1 \dots g_q\}$ must send p to distinct places. If $pg_i = pg_j$ for $i \neq j$ then $pg_ig_j^{-1} = p$. Thus, $g_ig_j^{-1} \in St(p)$ and the cosets $St(p)g_i$ and $St(p)g_j$ are equal.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = {\operatorname{St}(p)g_1, \operatorname{St}(p)g_2, \dots, \operatorname{St}(p)g_q}$$

where q = n/k. The elements $\{g_1 \dots g_q\}$ must send p to distinct places. If $pg_i = pg_j$ for $i \neq j$ then $pg_ig_j^{-1} = p$. Thus, $g_ig_j^{-1} \in St(p)$ and the cosets $St(p)g_i$ and $St(p)g_j$ are equal. Therefore, we conclude |Orb(p)| = q = n/k.

Theorem

If p is the pole of an element $T \in G^+ \subset SO(3)$ of maximal order k and $|G^+| = n$ then Orb(p) = n/k.

Proof.

The subgroup St(p) has k elements. Thus,

$$G^+/\operatorname{St}(p) = {\operatorname{St}(p)g_1, \operatorname{St}(p)g_2, \dots, \operatorname{St}(p)g_q}$$

where q = n/k. The elements $\{g_1 \dots g_q\}$ must send p to distinct places. If $pg_i = pg_j$ for $i \neq j$ then $pg_ig_j^{-1} = p$. Thus, $g_ig_j^{-1} \in St(p)$ and the cosets $St(p)g_i$ and $St(p)g_j$ are equal. Therefore, we conclude $|\operatorname{Orb}(p)| = q = n/k$.

Task (10 min)

What does this tell us about the poles of rotation of the cube?