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Absolute Constants and Hyperbolic Trigonometry

I Isomorphism of the Cayley-Klein and Poincaré disk models

I Isomorphism of the two Poincaré models

I Hyperbolic trigonometry functions

I Absolute constants
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Cayley and Poincaré

https://www.geogebra.org/3d/gzzatbga

The chord XY is a
geodesic in the
Cayley-Klein
model.

The arc XA′Y is
the corresponding
geodesic in the
Poincaré model.
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The Poincaré Disk and Half-Plane
Consider the map Ω : D2 → C+.

Ω(z) = i · 1 + z

1− z

It induces an isomorphism of geometries:

(H2,M) ' (C+,RMöb)
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The Hyperbolic Model Isomorphism Theorem

Corollary (10.2.3)

The three models of hyperbolic geometry, namely the Poincaré
disk and half-plane models and the Cayley-Klein model, are
isomorphic as geometries.
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Hyperbolic Trigonometry

The hyperbolic trigonometric functions are defined by:

sinh(t) =
et − e−t

2
cosh(t) =

et + e−t

2

Theorem

For a hyperbolic triangle ABC with sides {a, b, c} and angles
{α, β, γ} we have:

sinh(a)

sin(α)
=

sinh(b)

sin(β)
=

sinh(c)

sin(γ)
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Absolute Constants

In Euclidean space, there is no “natural” unit of measurement.
Similarity of figures implies there is no natural reference point.

In hyperbolic geometry, there are natural units!
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The Ideal Triangle

We know that the area of a hyperbolic triangle is:

S = π − α− β − γ ⇒ S ≤ π

Thus, the largest triangle in hyperbolic space has area S = π.

The natural unit of measure for area is π.
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The Schweikart Radius

Definition

Given a pair of perpendicular rays OA and OB they meet the
absolute A at points X and Y . There is a unique line XY
passing through X and Y . The distance from O to XY is the
Schweikart radius denoted σ.

The natural unit of measure for length is σ.
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