
MAT 402: Classical Geometry

MAT 402: Friday September 18th 2020

Learning Objectives:

- Select a notion of distance on a space
- Determine whether a linear map is an isometry
- Compute orbits and stabilizers of a given transformation group

Isometries

Definition

Suppose that a space X has a notion of distance d(x, y). An isometry is a map $f : X \to X$ such that d(x, y) = d(f(x), f(y)).

Question (3 min)

What's the notion of distance on the vector space \mathbb{R}^2 ?

Linear Maps

Question (5 min)

Which of the following linear transformations is distance preserving?

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Prove your claim.

Linear Maps

Question (5 min)

Consider a line $\ell \subset \mathbb{R}^2$. Pick a coordinate system and an orthonormal basis of \mathbb{R}^2 and write a matrix for the reflection about ℓ . Prove that reflection is an isometry.

Question (2 min)

What's the natural notion of distance on the circle $\mathbb{S}^1 = \{(x, y) : x^2 + y^2 = 1\}$?

Question (5 min)

What are the isometries of the circle?

Question (5 min)

What are the isometries of the circle?

Definition

We have two version of $\mathbb{S}^1 = \{(x, y) : x^2 + y^2 = 1\} = \{e^{i\theta} : 0 < \theta \le 2\pi\}.$

Question (5 min)

Show that

$${{\it R}_{ heta}} = egin{pmatrix} \cos(heta) & \sin(heta) \ -\sin(heta) & \cos(heta) \end{pmatrix} \qquad {\it R}_{ heta} = e^{i heta}$$

both rotate \mathbb{S}^1 by θ radians.

Orbits

Definition

The orbit of a point x under a transformation group G is: $Orb(x) = \{xg : g \in G\}$.

Task (2 min)

Suppose that $G = \{R_{\pi/2}, R_{\pi}, R_{3\pi/2}, R_{2\pi}\}$ and x = (1, 0). Calculate Orb(x).

Stabilizers

Definition

The stabilizer of a point x is:
$$St(x) = \{g \in G : xg = x\} \subseteq G$$
.

Question (5 min)

Why is St(x) a subgroup?

Stabilizers

Question (5 min)

Consider a square $\Box = ABCD$. What is St(A) for $G = Symm(\Box)$?