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Introduction

Definition (Symmetric Matrix)

A matrix A is a symmetric matrix if AT = A.

Definition (Orthogonal Matrix)

A square matrix A is an orthogonal matrix if AT = A−1.

Theorem (Spectral Decomposition for Symmetric Matrices)

Let A be an n× n real symmetric matrix. Let λ1, . . . , λn be its eigenvalues. Let
v1, . . . , vn be corresponding eigenvectors. Then A = PΛPT , where
P = [v1, · · · , vn] and Λ = diag[λ1, · · · , λn].

Remark
The matrix P above is an orthogonal matrix.
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Introduction

Definition (Non-Negative Definite Matrix)

An n× n real symmetric matrix A is called non-negative definite if xTAx ≥ 0 for
all x ∈ Rn.

Theorem
An n× n real symmetric matrix A is non-negative definite if and only if all its
eigenvalues are non-negative.

Definition (Positive Definite Matrix)

An n× n real symmetric matrix A is called positive definite if xTAx > 0 for all
nonzero x ∈ Rn.

Theorem
An n× n real symmetric matrix A is positive definite if and only if all its
eigenvalues are positive.
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Introduction

Example

Let A and B be two n× n real symmetric positive definite matrices. Let
k1, k2 ∈ R+. Let C = k1A+ k2B. Then AB−1A, C and C−1 are all symmetric
positive definite matrices.

Proof.
Since A is a real symmetric positive definite, we know A is non-singular.

So it is full rank, which implies that A has a trivial null space.

Since B is positive definite, B−1 is also.

Then xT (AB−1A)x = (Ax)B−1(Ax) = 0 if and only if Ax = 0, if and only
if x = 0.

Thus, the matrix AB−1A is positive definite.
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Introduction

Definition (Matrix Square Root)

Let A be a positive definite matrix. Then the square root of matrix A is
A

1
2 = PΛ

1
2P−1.

Example

Let A =

[
10 6
6 10

]
. Then λ1 = 4 with v1 =

[
−1
1

]
and λ2 = 16 with v2 =

[
1
1

]
.

We now have A =

[
−1 1
1 1

] [
4 0
0 16

] [
−1 1
1 1

]−1

.

Thus, A
1
2 =

[
−1 1
1 1

] [
4 0
0 16

] 1
2
[
−1 1
1 1

]−1

=

[
3 1
1 3

]
.

Theorem

Let A be a positive definite matrix and let A
1
2 be its positive square root. Let

A−
1
2 be the inverse of A

1
2 . Then A

1
2 is symmetric, and

A
1
2A

1
2 = A, A

1
2A−

1
2 = I, A−

1
2A−

1
2 = A−1.
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Introduction

Definition (Hermitian Matrix)

A square matrix A is a Hermitian (or self-adjoint) matrix if A = A∗, which means
it is equal to its own conjugate transpose.

Example

Let A =

[
1 2 + i

2− i 2

]
.

Take the complex conjugate:

[
1 2− i

2 + i 2

]
.

Take the transpose:

[
1 2 + i

2− i 2

]
.

The matrix A is a Hermitian matrix since A∗ = A.

If A has real entries, then A is Hermitian if and only if it is symmetric.
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Matrix Equality

We sometimes use rank-k correction when new data is added to a model.

By using the Woodbury Matrix Identity, we can do a rank-k correction to the
inverse of the original matrix in order to compute the inverse of a rank-k
correction of some matrix.

Theorem (Woodbury Matrix Identity)

Let A, X, R, and Y be complex matrices with size n× n, n× r, r× r, and r× n,
respectively. Suppose that A,R, and A+XRY are invertible. Then

(A+XRY )−1 = A−1 −A−1X(R−1 + Y A−1X)−1Y A−1.

Proof.

(A+XRY )[A−1 −A−1X(R−1 + Y A−1X)−1Y A−1]
= I +XRY A−1 −X(R−1 + Y A−1X)−1Y A−1 −XRY A−1X(R−1 +
Y A−1X)−1Y A−1

= I +XRY A−1 − (X +XRY A−1X)(R−1 + Y A−1X)−1Y A−1

= I +XRY A−1 −XR(R−1 + Y A−1X)(R−1 + Y A−1X)−1Y A−1

= I +XRY A−1 −XRY A−1

= I
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Matrix Equality

Theorem (Woodbury Matrix Identity)

Let A, X, R, and Y be complex matrices with size n× n, n× r, r× r, and r× n,
respectively. Suppose that A,R, and A+XRY are invertible. Then
(A+XRY )−1 = A−1 −A−1X(R−1 + Y A−1X)−1Y A−1.

Corollary

Consider the special case that n = r and X = Y = I. Then

(A+R)−1 = A−1 −A−1(R−1 +A−1)−1A−1

= A−1 −A−1(AR−1 + I)−1

= A−1 − (AR−1A+A)−1
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Matrix Inequality

Definition (Gersgorin Disc)

Let A = [aij ] be a complex n× n matrix. For i ∈ {1, . . . , n}, let Ri be the sum of
the absolute values of the non-diagonal entries in the ith row, that is,

Ri =

n∑
j=1,j 6=i

|aij |.

The Gersgorin Disc (centered at aii with radius Ri) is

Di = {z ∈ C : |z − aii| ≤ Ri}.

Theorem (Gersgorin Disc Theorem)

Every eigenvalue of a matrix lies within at least one Gershgorin disc.
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Matrix Inequality

Example

If M =

5 1 3
3 6 2
4 3 9

 then the Gershgorin Discs are:

D1 = {z ∈ C : |z−5| ≤ 4}, D2 = {z ∈ C : |z−6| ≤ 5}, D3 = {z ∈ C : |z−9| ≤ 7}.

We can draw the discs for M :

By the theorem, every eigenvalue lies within at least one discs.
The eigenvalues of M are {4, 2

(
4 +
√

5
)
, 2
(
4−
√

5
)
}.
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Matrix Inequality

Theorem (Gersgorin Disc Theorem)

Every eigenvalue of a matrix lies within at least one Gershgorin disc.

Proof.
Let λ be an eigenvalue of A with corresponding non-zero eigenvector x and
suppose |xi| ≥ |xj | for all j ∈ {1, . . . , n}.
We know Ax = λx. Then

Ax = λx =⇒
n∑
j=1

aijxj = λxi =⇒
∑
j,j 6=i

aijxj = (λ− aii)xi.

We divide both sides by xi and take absolute value of previous expression:

|λ− aii| =

∣∣∣∣∣∣
∑
j,j 6=i

aij
xj
xi

∣∣∣∣∣∣ ≤
∑
j,j 6=i

|aij |
∣∣∣∣xjxi
∣∣∣∣ ≤ ∑

j,j 6=i

|aij | = Ri
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Theorem
Let B be a p× p positive definite symmetric matrix and b > 0. Then

1

(det Σ)b
e−

1
2 tr(Σ−1B) ≤ 1

(detB)b

(
2b

e

)bp
for all p× p positive definite matrix Σ. The equality holds only for Σ = 1

2bB.

Proof.

Let B
1
2 be the symmetric square root of B. Then

tr(Σ−1B) = tr(Σ−1B
1
2B

1
2 ) = tr(B

1
2 Σ−1B

1
2 ).

Let λi be the eigenvalues of B
1
2 Σ−1B

1
2 . Since the matrix is positive definite,

λi > 0 for all i.
p∑
i=1

λi = tr(B
1
2 Σ−1B

1
2 ) = tr(Σ−1B)

p∏
i=1

λi = det(B
1
2 Σ−1B

1
2 ) = det(Σ−1B) = det(B)

det(Σ) .

Thus, det(Σ) = det(B)
p∏

i=1
λi

.
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Proof.

1

(det Σ)b
e−

1
2 tr(Σ−1B) =

p∏
i=1

λbi

(detB)b
e
− 1

2

p∑
i=1

λi

=
1

(detB)b

p∏
i=1

λbie
− 1

2λi

≤ 1

(detB)b

p∏
i=1

sup
λi≥0
{λbie−

1
2λi}

=
1

(detB)b

p∏
i=1

(2b)be−
1
2 ·2b

=
1

(detB)b
(
2b

e
)bp.

The equality holds iff Σ = 1
2bB.

Remark
By applying the theorem, we can find the maximum likelihood estimators of
multivariate normal distribution.
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Matrix Inequality

The Rayleigh–Ritz theorem is a numerical method of approximating
eigenvalues and originated in the context of solving physical boundary value
problems.

Definition (Rayleigh Quotient)

The Rayleigh quotient for a complex Hermitian matrix A and nonzero vector x is
defined as

R(A, x) =
x∗Ax

x∗x
.

Theorem (Rayleigh-Ritz Theorem)

Let A be a n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Then
for x 6= 0,

λ1 ≤ R(A, x) ≤ λn

λn = max
x 6=0

xTAx

xTx
= max
||x||=1

xTAx.

λ1 = min
x 6=0

xTAx

xTx
= min
||x||=1

xTAx.
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Matrix Inequality

Example

Let A =

1 1 1
1 2 2
1 2 3

.

Let x1 =

1
2
3

, x2 =

4
5
6

, and x3 =

4
6
8

.

Then

R(A, x1) =
xT1 Ax1

xT1 x1
=

70

14
= 5,

and

R(A, x2) =
xT2 Ax2

xT2 x2
=

382

77
≈ 4.961,

and

R(A, x3) =
xT3 Ax3

xT3 x3
=

584

116
≈ 5.034.

These give lower bounds for the largest eigenvalue of A (note λ3 ≈ 5.049).
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Matrix Inequality

A generalization of the Rayleigh-Ritz Theorem is the Courant-Fischer Theorem.

Theorem (Courant-Fischer Theorem)

Let A be a symmetric n× n matrix. Let λ1 ≤ . . . ≤ λn be its real eigenvalues and
v1, . . . , vn be the corresponding eigenvectors. For 1 ≤ k ≤ n, let S0 = {0},
Sk = span{v1, · · · , vk} and S⊥k be the orthogonal complement of Sk. Then

λk = min
||x||=1,x∈S⊥k−1

xTAx = min
x 6=0,x∈S⊥k−1

xTAx

xTx
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Matrix Inequality

Proof.

Since A is a symmetric matrix, we can let A = QΛQT be the spectral
decomposition, where Q is an orthogonal matrix. Thus ||QTx|| = ||x||.
xTAx = xTQΛQTx = (QTx)TΛ(QTx)
Thus, we just need to consider the case when A is a diagonal matrix.

Let A =

 λ1 0
. . .

0 λn

.

Then xTAx =
[
x1, . . . , xn

]  λ1 0
. . .

0 λn


x1

...
xn

 =
n∑
i=1

λix
2
i

Since A is a diagonal matrix, we know ei is an eigenvector corresponding to λi.
If x ∈ S⊥k−1, then x ⊥ ei for i ∈ {1, · · · , k − 1}.
Thus < x, ei >= 0 for i ∈ {1, . . . , k − 1}.
Thus xi =< x, ei >= 0 for i ∈ {1, . . . , k − 1}.
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Matrix Inequality

Proof.

When ||x|| = 1 and x ∈ S⊥k−1, we have

xTAx =

n∑
i=1

λix
2
i

=

n∑
i=k

λix
2
i since x1 = . . . = xk−1 = 0

≥
n∑
i=k

λkx
2
i since λ1 ≤ λ2 ≤ . . . ≤ λn

= λk

n∑
i=1

x2
i

= λk

Also, when x = ek, xTAx = eTkAek = λk.
Thus, λk = min

||x||=1,x∈S⊥k−1

xTAx. Similarly, we know λn = max
||x||=1

xTAx.
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Matrix Inequality

Theorem (Interlocking Eigenvalue Lemma)

Let A be a symmetric n× n matrix. Let λ1 ≤ . . . ≤ λn be its real eigenvalues.
Let µ1 ≤ µ2 ≤ · · · ≤ µn be the eigenvalues of A+ bbT , where b is a vector in Rn.
Then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn ≤ µn.

The interlocking eigenvalue lemma compares the eigenvalues of the original matrix
with the eigenvalues after adding a rank 1 matrix.

Example

Let A =

1 0 0
0 1 0
0 0 1

 and b =

1
2
3

. Then A+ bbT =

2 2 3
2 5 6
3 6 10

.

We have λ1 = λ2 = λ3 = 1.
By the Interlocking Eigenvalue Lemma, µ1 = µ2 = 1.
Also,

µ3 = tr(A+ bbT )− µ1 − µ2 = 15.
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Matrix Inequality

In mathematics, an eigenvalue perturbation problem is that of finding the
eigenvectors and eigenvalues of a system that is perturbed from one with
known eigenvectors and eigenvalues. This is useful for studying how sensitive
the original system’s eigenvectors and eigenvalues are to changes.

Theorem (Weyl’s Inequality)

Let A,B be n× n Hermitian matrices such that the eigenvalues of A,B and
A+B are λi(A), λi(B) and λi(A+B) arranged in increasing order, respectively.
Then for each k ∈ {1, 2, . . . , n}.

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

When k = 1 we have:

λ1(A) + λ1(B) ≤ λ1(A+B) ≤ λ1(A) + λn(B).

When k = n we have:

λn(A) + λ1(B) ≤ λn(A+B) ≤ λn(A) + λn(B).

Zhekai Pang and Yuhong Zhang (U of T) Matrix Analysis November 10th, 2021 21 / 25



Matrix Inequality

Proof.

For any 0 6= x ∈ Cn, by Rayleigh Quotient Theorem, λ1(B) ≤ x∗Bx
x∗x ≤ λn(B).

Thus, for any k ∈ {1, 2, . . . , n},

λk(A+B) = min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗(A+B)x

x∗x

= min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗Ax

x∗x
+
x∗Bx

x∗x

≥ min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗Ax

x∗x
+ λ1(B)

= λk(A) + λ1(B)
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Matrix Inequality

Proof.
Similarly,

λk(A+B) = min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗(A+B)x

x∗x

= min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗Ax

x∗x
+
x∗Bx

x∗x

≤ min
s1,s2,...,sn−k∈Cn

max
x 6=0,x⊥s1,s2,...,sn−k

x∗Ax

x∗x
+ λn(B)

= λk(A) + λn(B)

Thus,
λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).
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Thank you!
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