Introduction to Combinatorial Games

Zack Wolske
zack.wolske@mail.utoronto.ca

21 Sep, 2022

Outline

(1) Defining the Games
(2) Expanding the Games
(3) Analyzing the Games

My goals

- I will show you a game, ways to modify it, and methods we can use to analyze them.
- I will share the terminology used to describe these games to help you find out more about combinatorial game theory.
- I will play the games we invent with you.
- I hope you will take one of these games with you today, to play or analyze or both, and then I hope you tell someone about it.

Which games?

- Two people take turns removing 1 or 2 objects from a pile and leaving the rest, starting with 10.
- The game ends when there are no possible moves. The last player to move wins.
- Who has a strategy to get the last move, the first or second player?
- Let's play!

New games

- Two people take turns removing 1 or 2 objects from a pile and leaving the rest, starting with 10.

Attributes we will keep today

Two players taking turns; same moves allowed for both (we call this impartial); and the game eventually ends.

Attributes we will change

The allowed moves 1 or 2 , the starting amount 10 , and a secret third thing.

- One other common change is the last player to move loses. This is called misere. We won't use that rule today. They are interesting but harder to analyze - you can read more about them at http://miseregames.org by Thane Plambeck.

Changing the pile

- The size of the pile changes during the game - making a move is like choosing a new \mathbf{k} and trading places.

Definition (\mathcal{N} and \mathcal{P} positions)

We say \mathbf{k} is an \mathcal{N}-position if the next player has a winning strategy, and a \mathcal{P}-position if the previous player does.

- How does the position value depend on k ?
- Let's play!

Theorem (Characterizing Theorem)

- k is in \mathcal{P} if every (\forall) move from k lands in \mathcal{N}; and
- \mathbf{k} is in \mathcal{N} if some (\exists) move from k lands in \mathcal{P}.

Changing the moves

- A game with 1 or 2 only depends on the pile mod 3 - the remainder when dividing by 3 .
- Something similar happens for 1 or 2 or 3 .
- What happens with 1 or 3 or 4 ? What about 1 or 2 or 4 ?
- Let's play!
- With a finite set of moves, we will always get a repeating pattern. We just don't know what.
- We can use infinite move sets, like primes or Subtract a Square.

Changing to piles

- Two people take turns removing 1 or 2 objects from a pile and leaving or breaking the rest, starting with 10.
- Breaking means we separate the pile we take from into two piles.
- These games can have more than one pile, so we should clarify that we can only break a pile we take from.
- Let's play!

Additional Changes

- The move set can change during the game.
- It can depend on the position, for example, any proper divisor of \mathbf{k} gives a number theory twist.
- We can not allow the same move twice in a row. This means we can't use the same idea for a game tree, because moves depend on what happened, not just the current position (compare: Markov processes).
- Octal games let us specify how many piles we leave after taking a number. We played games allowing 0 or 1 (no breaking), then 0,1 or 2 (breaking allowed, not required).
- Let's play!

Game Trees

- A game tree is a directed graph where vertices are game positions and edges are moves. Requiring the game to end means the graph has no cycles, so it is a tree!
- We could find all position values by climbing the tree.
- The difficulty is describing the patterns in the values. How high do we need to climb before we can see what is happening?
- We can generalize to other combinatorial games on graphs: moving tokens on a graph, or thinking of a graph as a pile and take smaller graphs from it, as in the Caterpillar game.
- Let's play!

Modular ideas

- A game with 1 or 2 only depends on the pile mod 3 - that is, the remainder when dividing by 3 .
- Something similar happens for 1 or 2 or 3 .
- When we get a repeating pattern mod n, we're saying the remainders $\{0,1, \ldots, n-1\}$ can be split into two sets, \mathcal{N} and \mathcal{P} satisfying the Characterizing Theorem.
- A game may be eventually periodic, so $0 \bmod n$ may not be a \mathcal{P} position, even though 0 must be.

Breaking the binary

- In the game 2 and leaving or breaking the rest, every even position is \mathcal{N}, because we can subtract 2 and then break the rest into two equal piles.
- Some odd positions are also \mathcal{N}. But some are not. Let's play!
- If two positions are both \mathcal{P}, then so is their sum, using the "follow them" strategy. We could write $\mathcal{P}+\mathcal{P}=\mathcal{P}$.
- We also know $\mathcal{P}+\mathcal{N}=\mathcal{N}$, but what about $\mathcal{N}+\mathcal{N}$? Sometimes \mathcal{N}, sometimes \mathcal{P}.
- The Sprague-Grundy value encodes the value of all positions with smaller values it can move to. They are non-negative integers that you can find by "climbing the tree."
- The value is "the smallest non-negative integer that is not the value of a position it can move to." All \mathcal{P} positions have value 0 , so all \mathcal{N} positions have positive value.

Octal Games

- Octal games let us specify how many piles we leave after taking a number. We played taking games where we leave 1 pile (or 0), then breaking games where we can leave 0,1 or 2 .
- We might not allow 0 (i.e., you have to leave a non-empty pile), and we can use different rules for each subtraction.
- We can choose any subset of $0,1,2$ piles to be allowed, so there are 8 possible options for each subtraction. Hence, octal games.
- We know a lot about these games, but also very little.
- The database of known values of octal games is maintained by Achim Flammenkamp, https://wwwhomes.uni-bielefeld.de/achim/octal.html
- Let's play!

Thanks

- I hope you liked these games! They're often called subtraction and taking-and-breaking games. They're easy to play anywhere, with anyone!
- Teach them to your younger relatives - they help think about logical implications and what someone else would do, then they can win against adults.
- Email me if you find a new game you think is fun!
- Check out Integers, the Electronic Journal of Combinatorial Number Theory, http://math.colgate.edu/~integers/. It has a games section and a special edition (2021B) last year about these topics.
- The books Winning Ways for your Mathematical Plays give a lot more games and analysis. The series Games of No Chance give surveys of what is known and new research results.

