Shining a Rainbow-Coloured Light on the Fundamental Theorem of Algebra

by Yuveshen Mooroogen

7th of July 2021

A Polynomial of the Form $f(z)=(z-a)(z-b)(z-c)^{2}$

Figure: Domain colouring of the function $f(z)=(z+1+i)\left(z+\frac{1}{2}-\frac{1}{2} i\right)\left(z-\frac{1}{2}\right)^{2}$.

The Plan

- Question 1: Why are functions of the complex numbers hard to draw?
- Question 2: How does domain colouring work?
- Question 3: What does this have to do with the FTA?

PART I

The problem with complex functions

Real-Valued Functions of one Real Variable

- The graph of a function $f: \mathbf{R} \rightarrow \mathbf{R}$ is the set

$$
\Gamma_{f}=\{(x, f(x)): x \in \mathbf{R}\} .
$$

- This is a subset of $\mathbf{R} \times \mathbf{R}=\mathbf{R}^{2}$.

Figure: Graph of the function $f(x)=x^{2}$, from Wolfram|Alpha.

Real-Valued Functions of Two Real Variables

- The graph of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is the set

$$
\begin{aligned}
\Gamma_{f} & =\left\{(\mathbf{x}, f(\mathbf{x})): \mathbf{x} \in \mathbf{R}^{2}\right\} \\
& \cong\{(x, y, f(x, y)): x, y \in \mathbf{R}\} .
\end{aligned}
$$

- This is a subset of $\mathbf{R}^{2} \times \mathbf{R}=(\mathbf{R} \times \mathbf{R}) \times \mathbf{R}=\mathbf{R}^{3}$.

Figure: Graph of the function $f(x, y)=x^{2}+y^{2}$, from Wolfram|Alpha.

Complex-Valued Functions of One Complex Variable

- The graph of a function $f: \mathbf{C} \rightarrow \mathbf{C}$ is the set

$$
\begin{aligned}
\Gamma_{f} & =\{(\mathbf{z}, f(\mathbf{z})): \mathbf{z} \in \mathbf{C}\} \\
& \cong\{(x, y, \mathbf{f}(\mathbf{z})): x, y \in \mathbf{R}\} \\
& \cong\left\{\left(x, y, f_{1}(x, y), f_{2}(x, y)\right): x, y \in \mathbf{R}\right\}
\end{aligned}
$$

- This is a subset of $\mathbf{C}^{2}=\mathbf{C} \times \mathbf{C} \cong(\mathbf{R} \times \mathbf{R}) \times(\mathbf{R} \times \mathbf{R})=\mathbf{R}^{4}$.
- Moral: We need to do something clever to draw these functions!

Notation

- The complex numbers \mathbf{C} are the set of all ordered pairs of real numbers (x, y), on which we define three operations:

1. Multiplication: $(x, y) \cdot(u, v)=(x u-y v, x v+y u)$.
2. Addition: $(x, y)+(u, v)=(x+u, y+v)$.
3. Scalar multiplication: $u \cdot(x, y)=(u x, u y)$.

- The first two operations give \mathbf{C} the structure of a field, the last two equip it with a two-dimensional real vector space structure.
- We write $z=x+i y$ for the complex number (x, y). Thus, each z identifies a unique point on the complex plane.

Notation

Figure: The Complex Plane, from Wolfram MathWorld

- The modulus $|z|$ of a complex number z is its distance from the origin. The argument $\arg (z)$ of z is the angle that the segment joining it to the origin makes, relative to the positive real axis.
- These quantities allow us to write z in modulus-argument form (or polar coordinate form) as $(|z|, \arg (z))$.

PART II

Something clever

A Recipe for Domain Colouring: The Case of $f(z)=z^{3}$

- Step 1: Consider complex planes for the domain and codomain of f.

Figure: Domain and codomain of f.

- A point w in the codomain may be described by an ordered pair of real numbers.

A Recipe for Domain Colouring: The Case of $f(z)=z^{3}$

- Step 2: Impose a shaded colour wheel on the codomain.

Figure: Shaded colour wheel on the codomain.

- We may now describe w by the pair (Shade (w), $\operatorname{Hue}(w))$, where

$$
\text { Shade }(w)=|w| \quad \text { and } \quad \operatorname{Hue}(w)=\arg (w) .
$$

A Recipe for Domain Colouring: The Case of $f(z)=z^{3}$

- Step 3: Colour the set $f^{-1}(\{w\})$ with the same hue and shade as w.

Figure: Colouring of the set $f^{-1}(1)$ in the domain.

- A coloured point $z=x+i y$ in $f^{-1}(1)$ now gives us four pieces of information:

$$
\begin{aligned}
z & =(x, y, \operatorname{Shade}(w), \operatorname{Hue}(w)) \\
& =(x, y, \operatorname{Shade}(f(z)), \operatorname{Hue}(f(z)))
\end{aligned}
$$

A Recipe for Domain Colouring: The Case of $f(z)=z^{3}$

- Step 4: Apply this colouring rule to all points of the codomain.

Figure: Domain colouring of the function $f(z)=z^{3}$.

Example 1: The Identity Function

- As $\mathrm{id}^{-1}(w)=\{w\}$, the domain colouring is the chosen colour wheel.

Figure: Domain colouring of the function $\operatorname{id}(z)=z$.

Example 2: Constant Functions

- Since $\mathrm{f}^{-1}(w)=\mathbf{C}$ or \varnothing, the domain colouring is monochromatic.

Figure: Domain colouring of the function $f(z)=2-i$.

Example 3: Monomials

Figure: Domain colouring of the functions $f_{n}(z)=z^{n}$ for $n=1, \ldots, 6$.

Example 3: Monomials

Figure: Domain colouring of the functions $f_{n}(z)=\frac{1}{z^{n}}$ for $n=1, \ldots, 6$.

Example 4: Polynomials

- Proposition 1: The behaviour of a polynomial of degree n is dominated by z^{n} as $|z| \rightarrow \infty$.

Figure: Domain colouring of a polynomial of the form $f(z)=(z-a)(z+b)(z-c)^{2}$.

Example 4: Polynomials

- Proposition 2: Near a root of multiplicity n, a polynomial behaves like z^{n} does near the origin.

Figure: Domain colouring of a polynomial of the form $f(z)=(z-a)(z+b)(z-c)^{2}$.

Something for you to play with!

Figure: What kind of a polynomial is this?

PART III

d'Alembert's proof (1746), colourised by Velleman (2015)

Statement

- Fundamental Theorem of Algebra: Any nonconstant single-variable polynomial with complex coefficients has a root in C.

Figure: Two nonconstant polynomials.

Statement

- Fundamental Theorem of Algebra: The domain colouring of any nonconstant single-variable polynomial with complex coefficients contains a black point.

Figure: Two nonconstant polynomials.

d'Alembert's Lemma (Super Important)

- Darker Neighbourhood Principle: If f is a nonconstant polynomial and z is a point such that $f(z) \neq 0$, then for every $\epsilon>0$, there is a $z_{\text {darker }}$ with $\left|z-z_{\text {darker }}\right|<\epsilon$ and $\left|f\left(z_{\text {darker }}\right)\right|<|f(z)|$.

Figure: Two nonconstant polynomials.

d'Alembert's Lemma (Super Important)

- Darker Neighbourhood Principle: Let z be a point in the domain colouring of a nonconstant polynomial. If z is not black, then every disc centred at z contains a strictly darker point $z_{\text {darker }}$.

Figure: Two nonconstant polynomials.

Proof of the Fundamental Theorem of Algebra

- Assume that f is a nonconstant polynomial. We will show that its domain colouring contains a black point.

Proof of the Fundamental Theorem of Algebra

- Step 1: Choose a large square $S=[-R, R] \times[-R, R]$ in the domain of the function f.

Figure: Sketch of the portion of the domain colouring of f.

Proof of the Fundamental Theorem of Algebra

- Near the boundary, f behaves like its highest-degree term.

Figure: The colours get lighter as we move outside the white square.

Proof of the Fundamental Theorem of Algebra

- Step 2: Observe that, by the Extreme Value Theorem, the function $|f(z)|$ achieves a minimum at a point $z_{\text {darkest }}$ on this square.

Figure: Since f gets lighter near the boundary, $z_{\text {darkest }}$ cannot be on the boundary of S.

Proof of the Fundamental Theorem of Algebra

- Step 2: Observe that, by the Extreme Value Theorem, the function $|f(z)|$ achieves a minimum $z_{\text {darkest }}$ on this square.

Figure: Since f gets lighter near the boundary, $z_{\text {darkest }}$ is in the interior of S.

Proof of the Fundamental Theorem of Algebra

- Step 3: If $z_{\text {darkest }}$ is not black, then by the Darker Neighbourhood Principle, there is a strictly darker point nearby.

Figure: Consider a disc D centred at $z_{\text {darkest }}$.

Proof of the Fundamental Theorem of Algebra

- Step 3: If $z_{\text {darkest }}$ is not black, then by the Darker Neighbourhood Principle, there is a strictly darker point nearby.

Figure: By the Darker Neighbourhood Principle, D contains a darker point $z_{\text {darker }}$.

Proof of the Fundamental Theorem of Algebra

- But this would contradict that $z_{\text {darkest }}$ is the darkest point on S !

Figure: By the Darker Neighbourhood Principle, D contains a darker point $z_{\text {darker }}$.

Proof of the Fundamental Theorem of Algebra

- Thus, $z_{\text {darkest }}$ is black.

Figure: Q.E.D.

References and Suggested Reading

Copyright 2019 Ricky Reusser.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

References and Suggested Reading

- Reusser, R. Domain Coloring for Complex Functions. (2018) Accessed at https://observablehq.com/@rreusser/ domain-coloring-for-complex-functions on 31.07.20
- Wolfram|Alpha. Graph of $f(x)=x^{2}$. Accessed at https://www.wolframalpha.com/input/?i=graph+x\^2 on 28.07.20.
- Wolfram|Alpha. Graph of $f(x, y)=x^{2}+y^{2}$. Accessed at https://www.wolframalpha.com/input/?i=graph+3d+plot on 28.07.20.
- Weisstein, E. W. Complex Number. From MathWorld-A Wolfram Web Resource. Accessed at https://mathworld.wolfram.com/ComplexNumber.html on 28.07.20.

References and Suggested Reading

- Lundmark, H. Visualizing Complex Analytic Functions Using Domain Coloring. (2017) Accessed at https:
//users.mai.liu.se/hanlu09/complex/domain_coloring.html on 25.07.20.
- Velleman, D.J. The Fundamental Theorem of Algebra: A Visual Approach. Math Intelligencer 37, 12-21 (2015). https://doi.org/10.1007/s00283-015-9572-7.
- Stein, E.M., and Shakarchi, R. Complex Analysis. Princeton University Press, 2003.

Thank you!

yuveshen.mooroogen@mail.utoronto.ca

