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A Polynomial of the Form f (z) = (z − a)(z − b)(z − c)2

Figure: Domain colouring of the function f (z) = (z + 1 + i)(z + 1
2
− 1

2
i)(z − 1

2
)2.
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The Plan

Question 1: Why are functions of the complex numbers hard to draw?

Question 2: How does domain colouring work?

Question 3: What does this have to do with the FTA?
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PART I

The problem with complex functions
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Real-Valued Functions of one Real Variable

The graph of a function f : R→ R is the set

Γf = {(x , f (x)) : x ∈ R}.

This is a subset of R× R = R2.

Figure: Graph of the function f (x) = x2, from Wolfram|Alpha.
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Real-Valued Functions of Two Real Variables

The graph of a function f : R2 → R is the set

Γf = {(x, f (x)) : x ∈ R2}
∼= {(x , y , f (x , y)) : x , y ∈ R}.

This is a subset of R2 × R = (R× R)× R = R3.

Figure: Graph of the function f (x , y) = x2 + y2, from Wolfram|Alpha.
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Complex-Valued Functions of One Complex Variable

The graph of a function f : C→ C is the set

Γf = {(z, f (z)) : z ∈ C}
∼= {(x , y , f(z)) : x , y ∈ R}
∼= {(x , y , f1(x , y), f2(x , y)) : x , y ∈ R}.

This is a subset of C2 = C× C ∼= (R× R)× (R× R) = R4.

Moral: We need to do something clever to draw these functions!
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Notation

The complex numbers C are the set of all ordered pairs of real
numbers (x , y), on which we define three operations:

1. Multiplication: (x , y) · (u, v) = (xu − yv , xv + yu).
2. Addition: (x , y) + (u, v) = (x + u, y + v).
3. Scalar multiplication: u · (x , y) = (ux , uy).

The first two operations give C the structure of a field, the last two
equip it with a two-dimensional real vector space structure.

We write z = x + iy for the complex number (x , y). Thus, each z
identifies a unique point on the complex plane.
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Notation

Figure: The Complex Plane, from Wolfram MathWorld

The modulus |z | of a complex number z is its distance from the
origin. The argument arg(z) of z is the angle that the segment
joining it to the origin makes, relative to the positive real axis.

These quantities allow us to write z in modulus-argument form (or
polar coordinate form) as (|z |, arg(z)).
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PART II

Something clever
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A Recipe for Domain Colouring: The Case of f (z) = z3

Step 1: Consider complex planes for the domain and codomain of f .

Figure: Domain and codomain of f .

A point w in the codomain may be described by an ordered pair of
real numbers.
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A Recipe for Domain Colouring: The Case of f (z) = z3

Step 2: Impose a shaded colour wheel on the codomain.

Figure: Shaded colour wheel on the codomain.

We may now describe w by the pair (Shade(w),Hue(w)), where

Shade(w) = |w | and Hue(w) = arg (w).
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A Recipe for Domain Colouring: The Case of f (z) = z3

Step 3: Colour the set f −1({w}) with the same hue and shade as w .

Figure: Colouring of the set f −1(1) in the domain.

A coloured point z = x + iy in f −1(1) now gives us four pieces of
information:

z = (x , y ,Shade(w),Hue(w))

= (x , y ,Shade(f (z)),Hue(f (z)))
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A Recipe for Domain Colouring: The Case of f (z) = z3

Step 4: Apply this colouring rule to all points of the codomain.

Figure: Domain colouring of the function f (z) = z3.
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Example 1: The Identity Function

As id−1(w) = {w}, the domain colouring is the chosen colour wheel.

Figure: Domain colouring of the function id(z) = z.
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Example 2: Constant Functions

Since f−1(w) = C or ∅, the domain colouring is monochromatic.

Figure: Domain colouring of the function f (z) = 2− i .
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Example 3: Monomials

Figure: Domain colouring of the functions fn(z) = zn for n = 1, . . . , 6.
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Example 3: Monomials

Figure: Domain colouring of the functions fn(z) =
1
zn

for n = 1, . . . , 6.
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Example 4: Polynomials

Proposition 1: The behaviour of a polynomial of degree n is
dominated by zn as |z | → ∞.

Figure: Domain colouring of a polynomial of the form f (z) = (z − a)(z + b)(z − c)2.
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Example 4: Polynomials

Proposition 2: Near a root of multiplicity n, a polynomial behaves like
zn does near the origin.

Figure: Domain colouring of a polynomial of the form f (z) = (z − a)(z + b)(z − c)2.
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Something for you to play with!

Figure: What kind of a polynomial is this?
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PART III

d’Alembert’s proof (1746), colourised by Velleman (2015)
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Statement

Fundamental Theorem of Algebra: Any nonconstant single-variable
polynomial with complex coefficients has a root in C.

Figure: Two nonconstant polynomials.
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Statement

Fundamental Theorem of Algebra: The domain colouring of any
nonconstant single-variable polynomial with complex coefficients
contains a black point.

Figure: Two nonconstant polynomials.
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d’Alembert’s Lemma (Super Important)

Darker Neighbourhood Principle: If f is a nonconstant polynomial
and z is a point such that f (z) 6= 0, then for every ε > 0, there is a
zdarker with |z − zdarker| < ε and |f (zdarker)| < |f (z)|.

Figure: Two nonconstant polynomials.
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d’Alembert’s Lemma (Super Important)

Darker Neighbourhood Principle: Let z be a point in the domain
colouring of a nonconstant polynomial. If z is not black, then every
disc centred at z contains a strictly darker point zdarker.

Figure: Two nonconstant polynomials.
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Proof of the Fundamental Theorem of Algebra

Assume that f is a nonconstant polynomial. We will show that its
domain colouring contains a black point.
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Proof of the Fundamental Theorem of Algebra

Step 1: Choose a large square S = [−R,R]× [−R,R] in the domain
of the function f .

Figure: Sketch of the portion of the domain colouring of f .
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Proof of the Fundamental Theorem of Algebra

Near the boundary, f behaves like its highest-degree term.

Figure: The colours get lighter as we move outside the white square.
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Proof of the Fundamental Theorem of Algebra

Step 2: Observe that, by the Extreme Value Theorem, the function
|f (z)| achieves a minimum at a point zdarkest on this square.

Figure: Since f gets lighter near the boundary, zdarkest cannot be on the boundary of S.
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Proof of the Fundamental Theorem of Algebra

Step 2: Observe that, by the Extreme Value Theorem, the function
|f (z)| achieves a minimum zdarkest on this square.

Figure: Since f gets lighter near the boundary, zdarkest is in the interior of S.
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Proof of the Fundamental Theorem of Algebra

Step 3: If zdarkest is not black, then by the Darker Neighbourhood
Principle, there is a strictly darker point nearby.

Figure: Consider a disc D centred at zdarkest.
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Proof of the Fundamental Theorem of Algebra

Step 3: If zdarkest is not black, then by the Darker Neighbourhood
Principle, there is a strictly darker point nearby.

Figure: By the Darker Neighbourhood Principle, D contains a darker point zdarker.
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Proof of the Fundamental Theorem of Algebra

But this would contradict that zdarkest is the darkest point on S!

Figure: By the Darker Neighbourhood Principle, D contains a darker point zdarker.
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Proof of the Fundamental Theorem of Algebra

Thus, zdarkest is black.

Figure: Q.E.D.
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References and Suggested Reading

Copyright 2019 Ricky Reusser.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the ”Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
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Thank you!

yuveshen.mooroogen@mail.utoronto.ca
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