Making Juggling Mathematical

Erik R. Tou

School of Interdisciplinary Arts \& Sciences
University of Washington, Tacoma

Juggling Is Old!

Oldest known depictions appear in an Egyptian temple at Beni Hasan (c. 1994-1781 BCE).

A Numerical Description for Juggling Patterns

- Historically, juggling has been the province of entertainers and artists.
- Only in the 1980s did jugglers develop a way to keep track of different juggling patterns mathematically.

A Numerical Description for Juggling Patterns

- Historically, juggling has been the province of entertainers and artists.
- Only in the 1980s did jugglers develop a way to keep track of different juggling patterns mathematically.
- Idea: use a numerical code to describe the throws.
- Measure height of throw according to number of "beats" until it comes back down (usually, "beats" = "thuds")

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

- Repeated throws of height 3.

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

- Repeated throws of height 3.
- This pattern can be represented by (...3333...), or just (3).

A Numerical Description for Juggling Patterns

The timing of a pattern can be expressed using a "juggling diagram."

- Repeated throws of height 3.
- This pattern can be represented by (...3333...), or just (3).
- This is the siteswap for the juggling pattern.

Introduction to Siteswap Notation

(441)

(531)

Properly Defining A Siteswap

Some remarks:

- The beats always alternate between left and right hands.
- The length (or, period) of a siteswap is the number of beats that occur before it repeats.
- We are only interested in monoplex juggling: at most one ball caught/thrown at once.
- Balls which land simultaneously are collisions, and are not allowed.

Properly Defining A Siteswap

Some remarks:

- The beats always alternate between left and right hands.
- The length (or, period) of a siteswap is the number of beats that occur before it repeats.
- We are only interested in monoplex juggling: at most one ball caught/thrown at once.
- Balls which land simultaneously are collisions, and are not allowed.

More Precisely: If two balls are thrown at times i and j, and remain in the air for t_{i} beats and t_{j} beats, respectively, it cannot be the case that $t_{i}+i=t_{j}+j$ (since this would create a collision).

Counting Siteswaps

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_{i}+i(\bmod n)$ are distinct for $1 \leq i \leq n$.

Counting Siteswaps

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_{i}+i(\bmod n)$ are distinct for $1 \leq i \leq n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

Counting Siteswaps

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_{i}+i(\bmod n)$ are distinct for $1 \leq i \leq n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

Theorem (Tiemann and Magnusson, 1991)
The number of balls required to juggle a valid siteswap s is equal to the average of the numbers appearing in s.

Counting Siteswaps

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_{i}+i(\bmod n)$ are distinct for $1 \leq i \leq n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

Theorem (Tiemann and Magnusson, 1991)
The number of balls required to juggle a valid siteswaps is equal to the average of the numbers appearing in s.

$$
(531) \rightarrow \frac{5+3+1}{3}=3 \text { balls, } \quad(51635) \rightarrow \frac{5+1+6+3+5}{5}=\frac{20}{5}=4 \text { balls. }
$$

The Reverse Question

Question: Given b balls and some $n \geq 1$, how many valid siteswaps are there of length n ?

The Reverse Question

Question: Given b balls and some $n \geq 1$, how many valid siteswaps are there of length n ?

Examples:

- For $b=2$ and $n=2$, there are five: $(22),(40),(04),(31),(13)$.
- For $b=3$ and $n=3$, there are 37 :
(900), (090), (009), (630), (603), (063), (360), (036), (306), (333),
(711), (171), (117), (441), (414), (144), (522), (252), (225), (720),
(180), (126), (450), (423), (153), (027), (018), (612), (045), (342),
(351), (702), (801), (261), (504), (234), (135)!

Juggling Cards

Take $b=4$, and consider this set of five "juggling cards."

You can build any 4-ball juggling diagram from these cards.

Juggling Cards

Example: What siteswaps correspond to these card sequences?

Juggling Cards

Example: What siteswaps correspond to these card sequences?

C_{3}

C_{4}

C_{1}

C_{3}

c_{0}
Answers: (53192), (441), ()

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, \& Wright, 1994)
Given an integer $n \geq 1$, there exist $(b+1)^{n}$ valid siteswaps with $\leq b$ balls and length n, counting repetitions and cyclic permutations separately.

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, \& Wright, 1994)
Given an integer $n \geq 1$, there exist $(b+1)^{n}$ valid siteswaps with $\leq b$ balls and length n, counting repetitions and cyclic permutations separately.

Idea of Proof: For any b, there are $b+1$ juggling cards. Each siteswap can be represented by setting n cards in a row (with repetitions possible). The total number of siteswaps will then be $(b+1)^{n}$.

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, \& Wright, 1994)
Given an integer $n \geq 1$, there exist $(b+1)^{n}$ valid siteswaps with $\leq b$ balls and length n, counting repetitions and cyclic permutations separately.

Idea of Proof: For any b, there are $b+1$ juggling cards. Each siteswap can be represented by setting n cards in a row (with repetitions possible). The total number of siteswaps will then be $(b+1)^{n}$.

Corollary

Given an integer $n \geq 1$, there exist $(b+1)^{n}-b^{n}$ valid siteswaps with b balls and length n, counting repetitions and cyclic permutations separately.

Examples: For $b=2$ and $n=2$, there are $3^{2}-2^{2}=5$ valid siteswaps. For $b=3$ and $n=3$, there are $4^{3}-3^{3}=37$ valid siteswaps.

How to Multiply Juggling Patterns?

Juggling cards: it's easy to "concatenate" old patterns to get new ones.

However, this isn't compatible with siteswaps: $(531) \otimes(51)=(46131)$

How to Multiply Juggling Patterns?

Juggling cards: it's easy to "concatenate" old patterns to get new ones.

However, this isn't compatible with siteswaps: $(531) \otimes(51)=(46131)$
Siteswaps: direct concatenation won't always work: $(531)(51)=(53151)$, but (53151) is not a valid siteswap.

How to Multiply Juggling Patterns

Solution: Restrict to sets of "compatible" patterns.
Definition
A juggling pattern is a ground state pattern if there is a moment when the juggler can stop juggling, after which b "thuds" are heard as the balls hit the ground on each of the next b beats.

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for $b=3$: (3), (42), (423), (441), (531), (522), (6231), etc.

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for $b=3$: (3), (42), (423), (441), (531), (522), (6231), etc.
- Any two ground state siteswaps (with same b) can be "multiplied" via concatenation: $(441)(6231)=(4416231)$.
- Multiplication isn't always commutative: $(3)(42)=(42)(3)$, but $(3)(42)(522) \neq(42)(3)(522)$.
- Most ground state siteswaps can be "factored" into shorter ones: $(53403426231)=(5340)(3)(42)(6231)$.

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for $b=3$: (3), (42), (423), (441), (531), (522), (6231), etc.
- Any two ground state siteswaps (with same b) can be "multiplied" via concatenation: $(441)(6231)=(4416231)$.
- Multiplication isn't always commutative: $(3)(42)=(42)(3)$, but $(3)(42)(522) \neq(42)(3)(522)$.
- Most ground state siteswaps can be "factored" into shorter ones: $(53403426231)=(5340)(3)(42)(6231)$.
- If a siteswap can't be factored, it is "primitive."
- The "identity" siteswap is ().

Ground State Juggling Patterns

Question: Given b, how many ground state juggling patterns are there with given length $n \geq 0$?

Theorem (Chung \& Graham, 2008)
Given $b, n \geq 0$, the number of ground state juggling patterns with b balls and length n is given by

$$
J_{b}(n)= \begin{cases}n! & \text { if } n \leq b \\ b!\cdot(b+1)^{n-b} & \text { if } n>b\end{cases}
$$

Ground State Juggling Patterns

Question: Given b, how many ground state juggling patterns are there with given length $n \geq 0$?

Theorem (Chung \& Graham, 2008)
Given $b, n \geq 0$, the number of ground state juggling patterns with b balls and length n is given by

$$
J_{b}(n)= \begin{cases}n! & \text { if } n \leq b \\ b!\cdot(b+1)^{n-b} & \text { if } n>b\end{cases}
$$

Examples:

- $b=3, n=0: 0!=1-()$
- $b=3, n=3: 3!=6-$ (333), (342), (423), (441), (531), (522).
- $b=4, n=7: 4!\cdot 5^{3}=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 5 \cdot 5=3000$ siteswaps!

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{rlllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2}
\end{array} \frac{t_{6}}{3} \quad\right)
$$

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{rlllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2}
\end{array} \frac{t_{6}}{3} \quad\right)
$$

Choices:
4

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{rlllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2}
\end{array} \frac{t_{6}}{3} \quad\right)
$$

Choices:
4
4

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{lllllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2} & \frac{t_{6}}{3}
\end{array}\right)
$$

Choices:
4
4
4

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{lllllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2} & \frac{t_{6}}{3}
\end{array}\right)
$$

Choices:
3
4
4
4

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{lllllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2} & \frac{t_{6}}{3}
\end{array}\right)
$$

Choices:
2
4
4
4

Proof of Chung \& Graham's Theorem

- By definition, any juggling sequence $s=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ satisfies $\left\{t_{i}+i \mid 1 \leq i \leq n\right\}=\{b+1, b+2, \ldots, b+n\}$.
- So s corresponds to a permutation π on $\{1,2, \ldots, n\}$, via $\pi(i)=t_{i}+i-b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i)=t_{i}+i-b \geq i-b$ for all i.
Example: Let $n=6, b=3$.

$$
\left.i-b: \begin{array}{rlllll}
(& \frac{t_{1}}{-2} & \frac{t_{2}}{-1} & \frac{t_{3}}{0} & \frac{t_{4}}{1} & \frac{t_{5}}{2}
\end{array} \frac{t_{6}}{3} \quad\right)
$$

Choices:
1
2
3
4
4
4
Total Count: $1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \cdot 4=3!(b+1)^{3}=b!(b+1)^{n-b}$.

A Prime Number Theorem for Juggling Sequences

Question: Given b, how many primitive ground state siteswaps $P_{b}(n)$ are there with length n ?

A Prime Number Theorem for Juggling Sequences

Question: Given b, how many primitive ground state siteswaps $P_{b}(n)$ are there with length n ?

This is a much harder question to answer! Like with rational primes, primitive juggling patterns are hard to enumerate precisely.

A Prime Number Theorem for Juggling Sequences

Question: Given b, how many primitive ground state siteswaps $P_{b}(n)$ are there with length n ?

This is a much harder question to answer! Like with rational primes, primitive juggling patterns are hard to enumerate precisely.

Theorem ($\tau, 2019$)
Given $b \geq 4$, the number of primitive, ground state juggling patterns with b balls and length n is approximated by

$$
P_{b}(n) \sim \frac{b+1-\rho}{\left|s_{b}^{\prime}(1 / \rho)\right|} \cdot \rho^{n}
$$

where $s_{b}(z)$ is a b-degree polynomial and ρ is a constant satisfying $0.73 \cdot \frac{1}{e^{b} \sqrt{b}}<1-\frac{\rho}{b+1}<6.04 \cdot \frac{\sqrt{b}}{e^{b}}$.

An Analogy

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

An Analogy

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$.

An Analogy

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$.

Our Question: Given b, what proportion of ground state siteswaps of length n are primitive?

An Analogy

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$.

Our Question: Given b, what proportion of ground state siteswaps of length n are primitive?

The Answer (2019): The proportion is approximately $C_{b} \cdot\left(\frac{\rho}{b+1}\right)^{n}$, i.e., the primitive siteswaps are sparse since $\frac{\rho}{b+1}<1-\frac{0.73}{e^{b} \sqrt{b}}<0.994$:

$$
\lim _{n \rightarrow \infty} C_{b} \cdot\left(\frac{\rho}{b+1}\right)^{n}<\lim _{n \rightarrow \infty} C_{b} \cdot(0.994)^{n}=0
$$

References

J. Buhler and R. Graham. "Juggling patterns, passing, and posets," in Mathematical Adventures for Students and Amateurs, Mathematical Association of America, 2004, pp. 99-116.
B. Polster. The Mathematics of Juggling, Springer-Verlag, 2003.
F. Chung \& R. Graham. "Primitive Juggling Sequences," Amer. Math. Monthly 115 (2008), no. 3, pp. 185-194.
τ. "Asymptotic Counting Theorems For Primitive Juggling Patterns," International Journal of Number Theory, 15 (2019), no. 5, pp. 1037-1050.

Slides online at:

https://tinyurl.com/MakingJugglingMathematical
Thank you!

Some Future Directions

- Find improved bounds on ρ and $s_{b}^{\prime}(1 / \rho)$.
- What happens when you allow for a ball to be added or dropped (i.e., what if b can change)?
- Given a juggling siteswap s with length n, how many siteswaps of length $\leq n$ are "relatively prime" to s ?
- There are prime siteswaps (viewed from a graph-theoretic perspective). Can we count those in a similar way?

A Problem To Play With

Use Newton's method to approximate the largest positive root ρ of

$$
\bar{s}_{b}(x)=b!+(x-(b+1)) \sum_{k=0}^{b-1} k!\cdot x^{b-1-k}
$$

Graph of $\bar{s}_{5}(z)$, with $\rho \approx 5.9235$

