Making Juggling Mathematical

Erik R. Tou

School of Interdisciplinary Arts & Sciences University of Washington, Tacoma

Erik R. Tou (UW Tacoma)

Making Juggling Mathematical

January 31, 2023 1 / 28

▲ 四 ▶

Juggling Is Old!

Oldest known depictions appear in an Egyptian temple at Beni Hasan (c. 1994-1781 BCE).

э

(4) (日本)

- Historically, juggling has been the province of entertainers and artists.
- Only in the 1980s did jugglers develop a way to keep track of different juggling patterns mathematically.

- Historically, juggling has been the province of entertainers and artists.
- Only in the 1980s did jugglers develop a way to keep track of different juggling patterns mathematically.
- Idea: use a numerical code to describe the throws.
- Measure height of throw according to number of "beats" until it comes back down (usually, "beats" = "thuds")

The timing of a pattern can be expressed using a "juggling diagram."

Erik R. Tou (UW Tacoma)

The timing of a pattern can be expressed using a "juggling diagram."

• Repeated throws of height 3.

- Repeated throws of height 3.
- This pattern can be represented by (...3333...), or just (3).

- Repeated throws of height 3.
- This pattern can be represented by (...3333...), or just (3).
- This is the *siteswap* for the juggling pattern.

Introduction to Siteswap Notation

э

・ 同 ト ・ ヨ ト ・ ヨ

Properly Defining A Siteswap

Some remarks:

- The beats always alternate between left and right hands.
- The *length* (or, *period*) of a siteswap is the number of beats that occur before it repeats.
- We are only interested in *monoplex* juggling: at most one ball caught/thrown at once.
- Balls which land simultaneously are *collisions*, and are not allowed.

4 3 5 4 3 5 5

Properly Defining A Siteswap

Some remarks:

- The beats always alternate between left and right hands.
- The *length* (or, *period*) of a siteswap is the number of beats that occur before it repeats.
- We are only interested in *monoplex* juggling: at most one ball caught/thrown at once.
- Balls which land simultaneously are *collisions*, and are not allowed.

More Precisely: If two balls are thrown at times *i* and *j*, and remain in the air for t_i beats and t_j beats, respectively, it cannot be the case that $t_i + i = t_j + j$ (since this would create a collision).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_i + i \pmod{n}$ are distinct for $1 \le i \le n$.

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_i + i \pmod{n}$ are distinct for $1 \le i \le n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

周 ト イ ヨ ト イ ヨ ト

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_i + i \pmod{n}$ are distinct for $1 \le i \le n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

Theorem (Tiemann and Magnusson, 1991)

The number of balls required to juggle a valid siteswap s is equal to the average of the numbers appearing in s.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

A siteswap is a finite sequence of nonnegative integers. A valid siteswap is one with no collisions, i.e., the quantities $t_i + i \pmod{n}$ are distinct for $1 \le i \le n$.

Question: Given a valid siteswap, how do you know the number of balls required to juggle it?

Theorem (Tiemann and Magnusson, 1991)

The number of balls required to juggle a valid siteswap s is equal to the average of the numbers appearing in s.

$$(531) \rightarrow \frac{5+3+1}{3} = 3$$
 balls, $(51635) \rightarrow \frac{5+1+6+3+5}{5} = \frac{20}{5} = 4$ balls.

・ 何 ト ・ ヨ ト ・ ヨ ト

The Reverse Question

Question: Given b balls and some $n \ge 1$, how many valid siteswaps are there of length n?

3

< □ > < □ > < □ > < □ > < □ > < □ >

The Reverse Question

Question: Given b balls and some $n \ge 1$, how many valid siteswaps are there of length n?

Examples:

- For b = 2 and n = 2, there are five: (22), (40), (04), (31), (13).
- For b = 3 and n = 3, there are 37:

(900), (090), (009), (630), (603), (063), (360), (036), (306), (333), (711), (171), (117), (441), (414), (144), (522), (252), (225), (720), (180), (126), (450), (423), (153), (027), (018), (612), (045), (342), (351), (702), (801), (261), (504), (234), (135)!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Juggling Cards

Take b = 4, and consider this set of five "juggling cards."

You can build any 4-ball juggling diagram from these cards.

- 3

16 / 28

< □ > < □ > < □ > < □ > < □ > < □ >

Juggling Cards

Example: What siteswaps correspond to these card sequences?

イロト 不得下 イヨト イヨト 二日

Juggling Cards

Example: What siteswaps correspond to these card sequences?

17 / 28

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, & Wright, 1994)

Given an integer $n \ge 1$, there exist $(b+1)^n$ valid siteswaps with $\le b$ balls and length n, counting repetitions and cyclic permutations separately.

< □ > < □ > < □ > < □ > < □ > < □ >

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, & Wright, 1994)

Given an integer $n \ge 1$, there exist $(b+1)^n$ valid siteswaps with $\le b$ balls and length n, counting repetitions and cyclic permutations separately.

Idea of Proof. For any b, there are b+1 juggling cards. Each siteswap can be represented by setting n cards in a row (with repetitions possible). The total number of siteswaps will then be $(b+1)^n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Counting With Cards

Theorem (Buhler, Eisenbud, Graham, & Wright, 1994)

Given an integer $n \ge 1$, there exist $(b+1)^n$ valid siteswaps with $\le b$ balls and length n, counting repetitions and cyclic permutations separately.

Idea of Proof. For any b, there are b+1 juggling cards. Each siteswap can be represented by setting n cards in a row (with repetitions possible). The total number of siteswaps will then be $(b+1)^n$.

Corollary

Given an integer $n \ge 1$, there exist $(b+1)^n - b^n$ valid siteswaps with b balls and length n, counting repetitions and cyclic permutations separately.

Examples: For b = 2 and n = 2, there are $3^2 - 2^2 = 5$ valid siteswaps. For b = 3 and n = 3, there are $4^3 - 3^3 = 37$ valid siteswaps.

イロト 不得 トイヨト イヨト 二日

How to Multiply Juggling Patterns?

Juggling cards: it's easy to "concatenate" old patterns to get new ones.

However, this isn't compatible with siteswaps: $(531) \otimes (51) = (46131)$

Erik R. Tou (UW Tacoma)

How to Multiply Juggling Patterns?

Juggling cards: it's easy to "concatenate" old patterns to get new ones.

However, this isn't compatible with siteswaps: $(531) \otimes (51) = (46131)$

Siteswaps: direct concatenation won't always work: (531)(51) = (53151), but (53151) is not a valid siteswap.

・ 何 ト ・ ヨ ト ・ ヨ ト

How to Multiply Juggling Patterns

Solution: Restrict to sets of "compatible" patterns.

Definition

A juggling pattern is a *ground state* pattern if there is a moment when the juggler can stop juggling, after which b "thuds" are heard as the balls hit the ground on each of the next b beats.

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for b = 3: (3), (42), (423), (441), (531), (522), (6231), etc.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for b = 3: (3), (42), (423), (441), (531), (522), (6231), etc.
- Any two ground state siteswaps (with same b) can be "multiplied" via concatenation: (441)(6231) = (4416231).
- Multiplication isn't always commutative: (3)(42) = (42)(3), but $(3)(42)(522) \neq (42)(3)(522)$.
- Most ground state siteswaps can be "factored" into shorter ones: (53403426231) = (5340)(3)(42)(6231).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ground State Siteswaps

Facts about ground state siteswaps:

- They are all compatible with the "standard" siteswap (b).
- Ground state patterns for b = 3: (3), (42), (423), (441), (531), (522), (6231), etc.
- Any two ground state siteswaps (with same b) can be "multiplied" via concatenation: (441)(6231) = (4416231).
- Multiplication isn't always commutative: (3)(42) = (42)(3), but $(3)(42)(522) \neq (42)(3)(522)$.
- Most ground state siteswaps can be "factored" into shorter ones: (53403426231) = (5340)(3)(42)(6231).
- If a siteswap can't be factored, it is "primitive."
- The "identity" siteswap is ().

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ground State Juggling Patterns

Question: Given *b*, how many ground state juggling patterns are there with given length $n \ge 0$?

Theorem (Chung & Graham, 2008)

Given $b, n \ge 0$, the number of ground state juggling patterns with b balls and length n is given by

$$J_b(n) = \begin{cases} n! & \text{if } n \leq b \\ b! \cdot (b+1)^{n-b} & \text{if } n > b. \end{cases}$$

Erik R. Tou (UW Tacoma)

Ground State Juggling Patterns

Question: Given *b*, how many ground state juggling patterns are there with given length $n \ge 0$?

Theorem (Chung & Graham, 2008)

Given $b, n \ge 0$, the number of ground state juggling patterns with b balls and length n is given by

$$J_b(n) = \begin{cases} n! & \text{if } n \leq b \\ b! \cdot (b+1)^{n-b} & \text{if } n > b. \end{cases}$$

Examples:

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

$$\begin{pmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 \\ i-b: & -2 & -1 & 0 & 1 & 2 & 3 \end{pmatrix}$$

23 / 28

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

$$\begin{pmatrix} t_1 \\ i-b \end{pmatrix} = \begin{pmatrix} t_2 \\ -2 \end{pmatrix} = \begin{pmatrix} t_3 \\ -1 \end{pmatrix} = \begin{pmatrix} t_4 \\ 1 \end{pmatrix} = \begin{pmatrix} t_5 \\ 2 \end{pmatrix} = \begin{pmatrix} t_6 \\ 3 \end{pmatrix}$$
hoices:

CI

イロト イポト イヨト イヨト 二日

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

,

$$\begin{pmatrix} t_1 \\ i-b \end{pmatrix} \begin{pmatrix} t_2 \\ -2 \end{pmatrix} \begin{pmatrix} t_3 \\ -1 \end{pmatrix} \begin{pmatrix} t_4 \\ 1 \end{pmatrix} \begin{pmatrix} t_5 \\ 2 \end{pmatrix} \begin{pmatrix} t_6 \\ 3 \end{pmatrix}$$
hoices:
$$4 \quad 4$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

$$\begin{pmatrix} t_1 \\ i-b \end{pmatrix} \begin{pmatrix} t_2 \\ -2 \end{pmatrix} \begin{pmatrix} t_3 \\ -1 \end{pmatrix} \begin{pmatrix} t_4 \\ 1 \end{pmatrix} \begin{pmatrix} t_5 \\ 2 \end{pmatrix} \begin{pmatrix} t_6 \\ 3 \end{pmatrix}$$
hoices:
$$4 \quad 4 \quad 4$$

イロト イポト イヨト イヨト 二日

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

 $\begin{pmatrix} t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} \\ i - b: & -2 & -1 & 0 & 1 & 2 & 3 \end{pmatrix}$ Choices: 3 4 4 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

$$\begin{pmatrix} t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} \\ i - b: & -2 & -1 & 0 & 1 & 2 & 3 \end{pmatrix}$$
Choices: 2 3 4 4 4

イロト イポト イヨト イヨト 二日

- By definition, any juggling sequence $s = \{t_1, t_2, \dots, t_n\}$ satisfies $\{t_i + i \mid 1 \le i \le n\} = \{b + 1, b + 2, \dots, b + n\}.$
- So s corresponds to a permutation π on $\{1, 2, ..., n\}$, via $\pi(i) = t_i + i b$.
- So, counting juggling sequences is the same as counting permutations that satisfy $\pi(i) = t_i + i b \ge i b$ for all *i*.

Example: Let n = 6, b = 3.

 $\begin{pmatrix} t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} \\ i - b: & -2 & -1 & 0 & 1 & 2 & 3 \\ \end{bmatrix}$ Choices: 1 2 3 4 4 4 Total Count: $1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 = 3!(b+1)^{3} = b!(b+1)^{n-b}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A Prime Number Theorem for Juggling Sequences

Question: Given *b*, how many primitive ground state siteswaps $P_b(n)$ are there with length *n*?

< □ > < □ > < □ > < □ > < □ > < □ >

A Prime Number Theorem for Juggling Sequences

Question: Given *b*, how many primitive ground state siteswaps $P_b(n)$ are there with length *n*?

This is a much harder question to answer! Like with rational *primes*, *primitive* juggling patterns are hard to enumerate precisely.

A Prime Number Theorem for Juggling Sequences

Question: Given b, how many primitive ground state siteswaps $P_b(n)$ are there with length n?

This is a much harder question to answer! Like with rational *primes*, *primitive* juggling patterns are hard to enumerate precisely.

Theorem (τ , 2019)

Given $b \ge 4$, the number of primitive, ground state juggling patterns with b balls and length n is approximated by

$$P_b(n) \sim \frac{b+1-
ho}{|s_b'(1/
ho)|} \cdot
ho^n,$$

where $s_b(z)$ is a b-degree polynomial and ρ is a constant satisfying $0.73 \cdot \frac{1}{e^b\sqrt{b}} < 1 - \frac{\rho}{b+1} < 6.04 \cdot \frac{\sqrt{b}}{e^b}$.

イロト イポト イヨト イヨト

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

3

イロト イポト イヨト イヨト

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim_{n\to\infty} \frac{1}{\log n} = 0$.

(人間) トイヨト イヨト ニヨ

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to n are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim_{n\to\infty} \frac{1}{\log n} = 0$.

Our Question: Given *b*, what proportion of ground state siteswaps of length *n* are primitive?

- 本間 と く ヨ と く ヨ と 二 ヨ

A Classic Question: Given a positive integer n, what proportion of the numbers from 1 to *n* are prime?

The Answer (1896): The proportion is approximately $\frac{1}{\log n}$, i.e., the primes are "sparse" in the integers since $\lim_{n \to \infty} \frac{1}{\log n} = 0$.

Our Question: Given b, what proportion of ground state siteswaps of length *n* are primitive?

The Answer (2019): The proportion is approximately $C_b \cdot \left(\frac{\rho}{b+1}\right)^n$, i.e., the primitive siteswaps are sparse since $\frac{\rho}{b+1} < 1 - \frac{0.73}{e^b\sqrt{b}} < 0.994$:

$$\lim_{n\to\infty} C_b \cdot \left(\frac{\rho}{b+1}\right)^n < \lim_{n\to\infty} C_b \cdot (0.994)^n = 0.$$

25 / 28

References

J. Buhler and R. Graham. "Juggling patterns, passing, and posets," in Mathematical Adventures for Students and Amateurs, Mathematical Association of America, 2004, pp. 99-116.

B. Polster. The Mathematics of Juggling, Springer-Verlag, 2003.

F. Chung & R. Graham. "Primitive Juggling Sequences," Amer. Math. Monthly **115** (2008), no. 3, pp. 185-194.

 τ . "Asymptotic Counting Theorems For Primitive Juggling Patterns," International Journal of Number Theory, 15 (2019), no. 5, pp. 1037-1050.

Slides online at:

https://tinyurl.com/MakingJugglingMathematical

Thank you!

Erik R. Tou (UW Tacoma)

Making Juggling Mathematical

January 31, 2023

26 / 28

Some Future Directions

- Find improved bounds on ρ and $s'_b(1/\rho)$.
- What happens when you allow for a ball to be added or dropped (i.e., what if *b* can change)?
- Given a juggling siteswap s with length n, how many siteswaps of length ≤ n are "relatively prime" to s?
- There are *prime* siteswaps (viewed from a graph-theoretic perspective). Can we count those in a similar way?

- 4 回 ト 4 三 ト 4 三 ト

A Problem To Play With

Use Newton's method to approximate the largest positive root ρ of

$$ar{s}_b(x) = b! + (x - (b+1)) \sum_{k=0}^{b-1} k! \cdot x^{b-1-k}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの