
Arithmetic Circuits:

a survey of recent results and open questions

Amir Shpilka 1 Amir Yehudayoff 2

1Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel and Microsoft Research,
Cambridge MA. Email: shpilka@cs.technion.ac.il. This work was partially supported by the Israel Science
Foundation (grant number 339/10).

2Faculty of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel. Email:
amir.yehudayoff@gmail.com.

Abstract

A large class of problems in symbolic computation can be expressed as the task of computing
some polynomials; and arithmetic circuits form the most standard model for studying the complexity
of such computations. This algebraic model of computation attracted a large amount of research in
the last five decades, partially due to its simplicity and elegance. Being a more structured model
than Boolean circuits, one could hope that the fundamental problems of theoretical computer science,
such as separating P from NP, will be easier to solve for arithmetic circuits. However, in spite of the
appearing simplicity and the vast amount of mathematical tools available, no major breakthrough has
been seen. In fact, all the fundamental questions are still open for this model as well. Nevertheless,
there has been a lot of progress in the area and beautiful results have been found, some in the last
few years. As examples we mention the connection between polynomial identity testing and lower
bounds of Kabanets and Impagliazzo, the lower bounds of Raz for multilinear formulas, and two new
approaches for proving lower bounds: Geometric Complexity Theory and Elusive Functions.

The goal of this monograph is to survey the field of arithmetic circuit complexity, focusing mainly
on what we find to be the most interesting and accessible research directions. We aim to cover the
main results and techniques, with an emphasis on works from the last two decades. In particular, we
discuss the recent lower bounds for multilinear circuits and formulas, the advances in the question of
deterministically checking polynomial identities and the results regarding reconstruction of arithmetic
circuits. We do, however, also cover part of the classical works on arithmetic circuits. In order to
keep this monograph at a reasonable length, we do not give full proofs of most theorems, but rather
try to convey the main ideas behind each proof and demonstrate it, where possible, by proving some
special cases.

Contents

1 Introduction 1

1.1 Basic Definitions . 2

1.2 Arithmetic Complexity . 3

1.3 Arithmetic Circuit Classes . 6

1.4 Road Map . 7

1.4.1 Structural Results . 7

1.4.2 Lower Bounds for Arithmetic Circuits . 8

1.4.3 Polynomial Identity Testing . 9

1.4.4 Reconstruction of Arithmetic Circuits . 9

1.5 Additional Reading . 10

2 Structural Results 11

2.1 Universal Circuits . 11

2.2 Homogenization . 13

2.2.1 Multilinearization . 14

2.3 Partial Derivatives . 15

2.4 Depth Reduction . 16

2.5 Coping with Division Gates . 21

2.6 Discussion . 23

3 Lower Bounds 24

3.1 Existence of Hard Zero-One Polynomials . 24

3.2 General Circuits and Formulas . 25

3.3 Monotone Circuits . 27

3.4 Noncommutative Computation . 28

3.5 Constant Depth Circuits . 30

1

3.6 Multilinear Circuits and Formulas . 36

3.7 Circuits with Bounded Coefficients . 44

3.8 Approaches for Proving Lower Bounds . 45

3.8.1 Rigidity . 45

3.8.2 Tensor Rank . 46

3.8.3 Elusive Functions . 48

3.8.4 Geometric Complexity Theory . 49

3.8.5 Sum-of-Squares Problem . 49

3.9 Natural Proofs for Arithmetic Circuits? . 50

3.10 Meta Lower Bounds . 51

4 Polynomial Identity Testing 53

4.1 Generators and Hitting Sets . 55

4.2 Randomized Algorithms . 56

4.2.1 The Schwartz-Zippel Algorithm . 57

4.2.2 Time-Error Tradeoff . 57

4.2.3 The Agrawal-Biswass Algorithm . 59

4.3 PIT and Lower Bounds: Hardness-Randomness Tradeoffs 60

4.4 Sparse Polynomials . 65

4.5 Noncommutative Formulas . 67

4.5.1 Randomized Noncommutative PIT Algorithms 69

4.6 Depth-3 Circuits . 71

4.6.1 White-Box Algorithms . 72

4.6.2 Black-Box Algorithms . 73

4.7 Depth-4 Circuits . 77

4.7.1 Diagonal Circuits . 78

4.7.2 Multilinear ΣΠΣΠ(k) Circuits . 79

4.8 Read-Once Formulas . 85

4.9 Relation to Other Problems . 91

4.9.1 Polynomial Factorization . 91

4.9.2 Read-Once Testing . 94

4.10 Concluding remarks . 95

5 Reconstruction of Arithmetic Circuits 96

5.1 Hardness of Reconstruction . 97

2

5.2 Interpolation of Sparse Polynomials . 99

5.3 Learning via Partial Derivative . 100

5.4 Reconstruction of Depth-3 Circuits . 102

5.4.1 The Case k = 2 . 103

5.4.2 The Case of General k . 105

5.5 Concluding Remarks . 106

Chapter 1

Introduction

Arithmetic circuits are the most natural and standard model for computing polynomials. In this
model the inputs are variables x1, . . . , xn, and the computation is performed using the arithmetic
operations +,× and may involve constants from a field F. The output of an arithmetic circuit is thus
a polynomial (or a set of polynomials) in the input variables. The complexity measures associated
with such circuits are size and depth which capture the number of operations and the maximal
distance between an input and an output, respectively.

The most fundamental problems in algebraic complexity are related to the complexity of arith-
metic circuits: providing efficient algorithms for algebraic problems (e.g., matrix multiplication),
proving lower bounds on the size and depth of arithmetic circuits, giving efficient deterministic algo-
rithms for polynomial identity testing, and finding efficient reconstruction algorithms for polynomials
computed by arithmetic circuits (the latter problem is sometimes referred to as learning arithmetic
circuits or interpolating arithmetic circuits).

In the past 50 years, we have seen a flurry of beautiful and efficient algorithms for algebraic
problems. For example, Cooley and Tukey’s algorithm for the Discrete Fourier Transform [CT65],
Strassen’s algorithm and those following it for Matrix Multiplication [Str69, CW90] (see [BCS97]
for a detailed survey of algorithms for matrix multiplication), algorithms for factoring polynomials
(see [vzGG99, Kal03, vzG06] for surveys of results in this area), and Csanky’s algorithm for parallel
computation of determinant as well as all other linear algebra problems [Csa76]. In this survey
we shall not give details of these algorithms, but rather focus on complexity questions related to
arithmetic circuits, mainly on the problem of proving lower bounds for arithmetic circuits and the
question of deterministically deciding polynomial identities.

Arithmetic circuits are a highly structured model of computation compared to Boolean circuits.
For example, when studying arithmetic circuits we are interested in syntactic computation of polyno-
mials, whereas in the study of Boolean circuits we are interested in the semantics of the computation.
In other words, in the Boolean case we are not interested in any specific polynomial representation
of the function but rather we just want to compute some representation of it, while in the arithmetic
world we focus on a specific representation of the function. As such, one may hope that the P vs.
NP question will be easier to solve in this model. However, in spite of many efforts, we are still far
from understanding this fundamental problem. In fact, our understanding of most problems is far
from being complete. In particular, we do not have strong lower bounds for arithmetic circuits; We

1

do not know how to deterministically and efficiently determine whether a given arithmetic circuit
computes the zero polynomial; and we do not know how to efficiently reconstruct a circuit using
only queries to the polynomial it computes. Although seemingly different, these three problems are
strongly related to each other, and it is usually the case that a new understanding of one problem
sheds light on the other problems as well.

In recent years there has been some progress on these important problems for several interesting
classes of arithmetic circuits. In this monograph we aim to describe this recent progress. In particular,
we shall cover the new lower bounds on the size of multilinear circuits, the new identity testing
algorithms for several restricted classes of circuits and their connection to circuit lower bounds, and
the recent reconstruction algorithms for depth-3 arithmetic circuits. We also present many open
questions that we view as natural “next step” questions, given our current state of knowledge.

1.1 Basic Definitions

Before any further discussion, we give the basic definitions related to arithmetic circuits.

Definition 1.1 (Arithmetic circuits). An arithmetic circuit Φ over the field F and the set of variables
X (usually, X = {x1, . . . , xn}) is a directed acyclic graph as follows. The vertices of Φ are called
gates. Every gate in Φ of in-degree 0 is labeled by either a variable from X or a field element from
F. Every other gate in Φ is labeled by either × or + and has in-degree 2. An arithmetic circuit is
called a formula if it is a directed tree whose edges are directed from the leaves to the root.

Every gate of in-degree 0 is called an input gate (even when the gate is labeled by a field element).
Every gate of out-degree 0 is called an output gate. Every gate labeled by × is called a product
gate and every gate labeled by + is called a sum gate. The size of Φ, denoted |Φ|, is the number
of edges in Φ. The depth of a gate v in Φ, denoted depth(v), is the length of the longest directed
path reaching v. The depth of Φ is the maximal depth of a gate in Φ. When speaking of bounded
depth circuits – circuits whose depth is bounded by a constant independent of |X| – we do not have
a restriction on the fan-in. For two gates u and v in Φ, if (u, v) is an edge in Φ, then u is called a
child of v, and v is called a parent of u.

An arithmetic circuit computes a polynomial in a natural way: An input gate labelled by α ∈ F∪X
computes the polynomial α. A product gate computes the product of the polynomials computed by
its children. A sum gate computes the sum of the polynomials computed by its children.

For a gate v in Φ, define Φv to be the sub-circuit of Φ rooted at v. Denote by Xv the set of
variables that occur in the circuit Φv. We usually denote by fv the polynomial in F[Xv] computed
by the gate v in Φ. We sometimes abuse notation and denote by Φv the polynomial computed by v
as well. Define the degree of a gate v, denoted deg(v), to be the total degree of the polynomial fv
(e.g., the total degree of x2

1x2 +x1 + 1 is three, whereas the individual degrees are at most two). The
degree of Φ is the maximal degree of a gate in Φ.

It is clear that every polynomial f ∈ F[X] can be computed by an arithmetic circuit and by an
arithmetic formula. The main question is how many gates are needed for the computation.

The definition above shows an evident difference between arithmetic circuits and Boolean circuits.
While Boolean circuits can perform operations on the “bit representation” of the input field elements,

2

that are not necessarily the arithmetic operations, arithmetic circuits cannot. Nevertheless, most
algorithms for algebraic problems fit naturally into the framework of arithmetic circuits.

One last thing to note is that we always regard an arithmetic circuit as computing a polynomial
in F[X] and not a function from F|X| to F. In general, every polynomial defines a unique function,
but a function can usually be expressed as a polynomial in many ways. For example, the polynomial
x2 − x is not the zero polynomial as it has nonzero coefficients. However, over the field with two
elements, F2, it computes the zero function. This distinction is especially important when studying
the identity testing problem. This is another difference between the Boolean world and the arithmetic
world.

Remark 1.1. For the rest of the survey, unless otherwise stated, the results hold for arbitrary fields.
In most cases, for simplicity of discussion and notation, we do not explicitly state the dependence
on the field. In general, the question of which field we are working over is important and can make
a difference, both from a theoretical point of view and from a practical point of view. The main
examples of fields that the reader should bear in mind are prime fields and the real numbers.

1.2 Arithmetic Complexity

Arithmetic complexity classes were first defined in the seminal works of Valiant [Val79a, Val82].
Valiant gave analogous definitions for the classes P and NP in the algebraic world, and showed
complete problems for these classes. We now give a very brief overview of these classes and state the
main known results. As this material was covered in many places, we do not give any proofs here.
For a more detailed treatment and proofs, we refer the interested reader to Refs. [BCS97, Bür99,
HWY10b].

We begin by defining the class VP, the algebraic analog of the class P. Originally, Valiant called
this class the class of p-bounded polynomials (computed by “polynomially bounded” circuits), but
nowadays the notation VP is used (where V is an acronym for Valiant).

Definition 1.2. A family of polynomials {fn} over F is p-bounded if there exists some polynomial
t : N→ N such that for every n, both the number of variables in fn and the degree of fn are at most
t(n), and there is an arithmetic circuit of size at most t(n) computing fn. The class VPF consists of
all p-bounded families over F.

The polynomial fn(x) = x2n , for example, can be computed by size O(n) circuits, but it is
not in VP as its degree is not polynomial. One motivation for this degree restriction comes from
computation over, say, the rational numbers: if the degree is too high then we cannot efficiently
represent the value of the polynomial on a given input by a “standard” Boolean circuit. Also note
that in the definition we do not require the circuit computing fn to have a polynomial degree, but,
as we shall later see, this property holds without loss of generality (see Theorem 2.2 below).

An interesting family in VP is the family of determinants,

DETn(X) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i),

where X = (xi,j) is an n × n matrix, Sn is the set of permutations of n elements and sgn(σ) is the

3

signature of the permutation σ. It is a nice exercise to find a polynomial size arithmetic circuit for
DETn that does not use divisions.

Remark 1.2. For the rest of the survey we sometimes say polynomial and mean a family of polynomi-
als, e.g., when we talk of the determinant polynomial we actually talk about the family of determinant
polynomials.

We now define VNP, the algebraic analog of the class NP.

Definition 1.3. A family of polynomials {fn} over F is p-definable if there exist two polynomially
bounded functions t, k : N→ N and a family {gn} in VPF such that for every n,

fn(x1, . . . , xk(n)) =
∑

w∈{0,1}t(n)

gt(n)(x1, . . . , xk(n), w1, . . . , wt(n)).

The class VNPF consists of all p-definable families over F.

Roughly speaking, VNP is the class of polynomials f so that given a monomial, one can efficiently
compute the coefficient of this monomial in f (this does not follow immediately from the definition,
for more details see, e.g., Refs. [Val82, HWY10b]). To better understand the connection to NP, one
can think of the variables w = (w1, . . . , wt(n)) as the “witness,” and so summing over all witnesses is
the arithmetic analog of searching for a witness in NP. The existential quantifier in the definition of
NP is translated to the algebraic operation of addition. In some sense, this makes VNP a version of
#P as well. The canonical example for a family in VNP is the family of permanents of n×n matrices

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i). (1.1)

One way to see that permanent is in VNP is by Ryser’s formula, that also gives the smallest known
circuit computing permanent (which is also a depth-3 circuit).

Fact 1.1 ([Rys63]). For every n ∈ N, PERMn(X) =
∑

T⊆[n](−1)n−|T |
∏n
i=1

∑
j∈T xi,j.

It follows by definition that VP ⊆ VNP. Valiant’s hypothesis says that VP is a strict subclass of
VNP.

Valiant’s hypothesis I: VP 6= VNP.

As arithmetic circuits are more structured than Boolean circuits, one could hope that proving
Valiant’s hypothesis should be easier than its Boolean counterpart. A very weak version of this
statement was proved in Ref. [HWY10b], where it was shown that in a non-associative world, where
variables are not assumed to satisfy the identity (xy)z = x(yz), Valiant’s hypothesis I holds.
This non-associative statement is an evidence for the obvious: the more structured the world is, the
easier it is to prove lower bounds. Specifically, in a non-associative world algorithms cannot exploit
“symmetries” that follow from associativity. Indeed, in such a world it is more difficult to design
algorithms and lower bounds are easier to prove.

Besides defining the classes VP and VNP, Valiant also gave complete problems for these classes.
He described a reduction between families of polynomials and gave complete families with respect
to it.

4

Definition 1.4. A polynomial f(x1, . . . , xn) over F is called a projection of a polynomial
g(y1, . . . , ym) over F if there exists an assignment ρ ∈ ({x1, . . . , xn} ∪ F)m such that f(x1, . . . , xn) ≡
g(ρ1, . . . , ρm). In other words, f can be derived from g by a simple substitution. This definition can
be extended to projections between families of polynomials. The family {fn} is a p-projection of the
family {gn} if there exists a polynomially bounded t : N→ N such that for every n, fn is a projection
of gt(n).

Both VP and VNP are closed under projections, e.g., if f is in VP then any projection of f is also
in VP. Valiant showed that permanent is complete for the class VNP.

Theorem 1.1 ([Val79a]). For any field F such that char(F) 6= 2, the family {PERMn} is VNP-
complete. Namely, any family in VNP is a p-projection of it.

Valiant’s hypothesis I is thus equivalent to proving a super-polynomial lower bound on the size
of circuits computing the permanent. We note that a stronger version of Theorem 1.1 was proved in
Ref. [HWY10b], where it was shown that permanent is VNP-complete even in a very weak compu-
tational world where the variables are not assumed to be commutative nor associative.

Valiant also showed that determinant is VP-complete with respect to quasi-polynomial projections.

Theorem 1.2 ([Val79a]). The family {DETn} is VP-complete with respect to quasi-polynomial
projections. That is, for any family {fn} in VP there exists a function t : N → N satisfying1

t(n) = nO(logn) such that fn is a projection of DETt(n). In fact, if we change the definition of

VP to VQP by replacing polynomial by quasi-polynomial (i.e., 2polylog(n)), then determinant is VQP-
complete.

This theorem follows immediately from the next two theorems that show that arithmetic circuits
are “shallow,” and that determinant can “simulate” small formulas.

Theorem 1.3 ([VSBR83]). Let f be a degree r polynomial computed by a size s circuit. Then f can
be computed by a circuit of size poly(r, s) and depth O(log r(log r + log s)).

Theorem 1.3 was proved in a seminal work of Valiant et al. [VSBR83]. It is commonly rephrased as
VP = VNC2, where VNCk denotes polynomial size and polynomial degree arithmetic circuits of depth
O(logk n). Clearly, VNC1 ⊆ VNC2 ⊆ . . . ⊆ VP, and Theorem 1.3 shows that in fact the chain halts
after two steps. Since determinant is in VP, Theorem 1.3 implies that determinant has a formula of
quasi-polynomial size (more generally, every polynomial in VNC2 has a formula of quasi-polynomial
size).

Theorem 1.4 ([Val79a]). For any polynomial f in F[X] that can be computed by a formula of size
s over F, there is a matrix A of dimensions (s + 1) × (s + 1) whose entries are in X ∪ F such that
DET(A) = f .

As determinant is complete for VQP, an algebraic analog of the P vs. NP question is the question
of “embedding” permanent in determinant.

Valiant’s hypothesis II: VNP 6⊂ VQP.

1Unless stated otherwise, logarithms are in base two.

5

This hypothesis is also known as Valiant’s extended hypothesis. Stated differently, the hypothesis
is that the permanent does not belong to VQP. Thus, in order to prove Valiant’s extended hypothesis
it suffices to prove that one cannot represent PERMn as the determinant of a matrix of dimension
quasi-polynomial in n. Currently, the best lower bounds on the dimension of such a matrix are given
by the following theorem of [MR04, CCL08].

Theorem 1.5 ([MR04, CCL08]). Let F be a field of characteristic different than two and let X =
(xi,j)i,j∈[n] be a matrix of variables. Then, any matrix A whose entries are linear functions in
{xi,j}i,j∈[n] over F such that DET(A) = PERMn(X) must be of dimension at least n2/2.

Here is a rough sketch of the idea behind Mignon and Ressayre’s proof of Theorem 1.5. Compute
the rank of the Hessian matrix, i.e. the matrix of second partial derivatives, of both PERMn(X)
and DET(A). This rank for PERMn(X) is at least (roughly) n2, whereas for DET(A) this rank is
of order D, where D is the dimension of A.

Valiant’s extended hypothesis gives a way for reformulating a question about circuits as a purely
algebraic question: the VQP vs. VNP problem is equivalent to the problem of embedding the
permanent inside the determinant. One advantage of this formulation is that the combinatorial
structure of circuits does not appear in it.

Open Problem 1. Improve the lower bound on the dimension of a matrix A with entries that are
linear functions in {xi,j}i,j∈[n] such that DET(A) = PERMn(X).

1.3 Arithmetic Circuit Classes

In addition to the general model of arithmetic circuits, introduced in Section 1.1, we will be consid-
ering several other, more restricted, classes of arithmetic circuits. In particular, we will be interested
in bounded depth arithmetic circuits, and even more specifically in depth-3 and depth-4 circuits, in
multilinear circuits, noncommutative circuits and more. We shall now define some of these classes
and discuss their importance.

The model of bounded depth circuits was already defined in Section 1.1. Two important sub-
classes of bounded depth circuits that we shall focus on in this monograph are depth 3 circuits, also
known as ΣΠΣ circuits and depth-4 circuits known as ΣΠΣΠ circuits. A ΣΠΣ circuit is a depth-3
circuit with an addition gate at the top, a middle layer of multiplication gates and then a level of
addition gates at the bottom. A ΣΠΣ circuit with s multiplication gates compute polynomials of
the form

∑s
i=1

∏di
j=1 `i,j(x1, . . . , xn), where the `i,j ’s are linear functions. Although a very restricted

model this is the first class for which we do not have any strong lower bounds, over fields of charac-
teristic zero (see Section 3.5). Moreover, in Section 3.8.2 we discuss a result of Raz [Raz10] showing
that strong lower bounds for (a restricted subclass of) ΣΠΣ circuits imply super-polynomial lower
bound on the formula complexity of permanent.

Similar to depth-3 circuits, a ΣΠΣΠ circuit is composed of four alternating layers of addi-
tion and multiplication gates. Thus, a size s ΣΠΣΠ circuit computes a polynomial of the form∑s

i=1

∏di
j=1 fi,j(x1, . . . , xn), where the fi,j ’s are polynomials of degree at most s having at most s

monomials (i.e., they are s-sparse polynomials). The importance of ΣΠΣΠ circuits stems for two
main reasons. Depth-4 is the first depth for which we do not have strong lower bounds for any

6

field of characteristic different than 2 (over F2 lower bounds follow from the results of Razborov
and Smolensky [Raz87, Smo87]). The best known lower bounds, due to Raz [Raz08], are smaller
than n2 (see Section 3.5). Another important reason is that, with respect to proving exponential
lower bounds, ΣΠΣΠ circuits are as interesting as general arithmetic circuits. Namely, an n-variate
degree n polynomial can be computed by a sub-exponential arithmetic circuit if and only if it can
be computed by a sub-exponential ΣΠΣΠ circuit. This result, due to Agrawal and Vinay [AV08], is
discussed in Section 2.4. Furthermore, derandomizing the polynomial identity testing problem for
such circuits is almost equivalent to derandomizing it for general arithmetic circuits. Thus, in order
to understand the main open problems in arithmetic circuit complexity, one can focus on depth-4
circuits, instead of general arithmetic circuits, without loss of generality.

Another important model that we discuss in this monograph is multilinear circuits. A polynomial
f ∈ F[X] is called multilinear if the individual degree of each variable in f is at most one. An
arithmetic circuit Φ is called multilinear if every gate in Φ computes a multilinear polynomial. An
arithmetic circuit Φ is called syntactically multilinear if for every product gate v = v1 × v2 in Φ,
the two sets Xv1 and Xv2 are disjoint (recall that Xu is the set of variables that occur in the circuit
Φu). Syntactically multilinear circuits are clearly multilinear but the other direction is not true in
general.

While being a very restricted model of computation, multilinear circuits and formulas form a very
interesting class as for many multilinear polynomials, e.g., permanent and iterated matrix multipli-
cation, the currently best arithmetic circuits computing them are multilinear. Indeed, computing
a multilinear polynomial with a circuit that is not multilinear requires some “non-intuitive” can-
cellations of monomials. We do not however, that such “clever” cancellations occur, e.g., in small
arithmetic circuits computing the determinant. In particular, we do not know today of polynomial
size multilinear circuits computing the determinant. Being a natural model for computing multi-
linear polynomials, multilinear circuits are an interesting and an important class of circuits and we
discuss the best results known for them.

In addition to bounded depth circuits and multilinear circuits we shall also study monotone
circuits, noncommutative circuits, circuits with bounded coefficients and read-once formulas. We
shall give the relevant definitions when we first discuss each of these classes.

1.4 Road Map

Here is a short overview of the content of this survey.

1.4.1 Structural Results

Due to its algebraic nature, the model of arithmetic circuits is more structured than the model of
Boolean circuits. As such, we are able to prove results in the arithmetic world that in the Boolean
case are still open. In Section 2 we discuss some of the works on the structure of arithmetic circuits.
These structural properties of arithmetic circuits are also used as starting points to proving lower
bounds. We now discuss three examples of such structural results and their connection to lower
bounds.

7

A striking result due to [VSBR83] is that in the arithmetic world VP = VNC2 (see Theorem 1.3).
This is in contrast to the Boolean world, where it is conjectured that P 6= NC. Subsequently, Agrawal
and Vinay [AV08] proved a depth-4 version of this statement, showing that in order to prove expo-
nential lower bounds on the size of general arithmetic circuits one just needs to prove exponential
lower bounds on the size of depth-4 circuits.

A surprising result due to Baur and Strassen [BS83], that strongly relies on the underlying
algebraic structure, states that computing a polynomial f(x1, . . . , xn) is essentially equivalent to
simultaneously computing f and all of its n partial derivatives ∂f

∂x1
, . . . , ∂f∂xn . Thus, proving a lower

bound on the size of a circuit computing a set of polynomials is as difficult as proving a lower bound
for a single polynomial. Alternatively, perhaps more optimistically, proving lower bounds should not
be so difficult, as instead of proving a lower bound on the computation of a single polynomial we
can try and prove a lower bound for circuits computing many polynomials. This principle actually
turned out to be useful in at least two cases: showing that divisions are not necessary in computing
polynomials by general arithmetic circuits [Str73b] and proving lower bounds for multilinear circuits
[RSY08].

An interesting fact is that arithmetic circuits computing homogeneous polynomials can be trans-
formed to be homogeneous, with only a small overhead. Recently, Raz [Raz10] proved that for
formulas, this transformation can be done at a smaller cost than what was known before. In partic-
ular, Raz showed that if one can prove (very) strong lower bounds on tensor rank then one obtains
super-polynomial lower bounds on formula-size. Since tensor rank is no other than the size of the
smallest set-multilinear depth-3 circuit computing the “tensor,” Raz’s result says that a very strong
lower bound for the (very restricted) model of set-multilinear depth-3 circuits implies a lower bound
for general formulas.

1.4.2 Lower Bounds for Arithmetic Circuits

One of the biggest challenges of algebraic complexity is proving lower bounds on circuit-size. Unlike
the case of Boolean circuits, super-linear lower bounds on the size of general arithmetic circuits are
known [Str73b, BS83]. Contrarily,no strong lower bounds are known for bounded depth arithmetic
circuits. In particular, no super-quadratic lower bound is known even for circuits of depth 4, when
char(F) 6= 2.

In Section 3 we survey the known lower bounds and discuss some proofs in more detail. In
particular, we explain Strassen’s degree bound that gives a super-linear lower bound for general
circuits [Str73b] and Kalorkoti’s quadratic lower bound on the size of general formulas [Kal85]. We
discuss the lower bounds for the size of bounded depth circuits [SS91, Raz08]. We then consider
in detail depth-3 circuits, which is the “first” model for which proving lower bounds seems to be a
difficult task.

In this Section we also explain the following two-step “technique” for proving lower bound for
arithmetic circuits. The first step is based on the fact that polynomials computed by small arithmetic
circuits can be presented as a sum of a small number of products of “simpler” polynomials (this
is one of the structural theorems that we prove). The second step is using the so-called partial
derivative method to bound the complexity of such polynomials. By applying these two steps, we
derive lower bounds for various classes of arithmetic circuits, such as monotone arithmetic circuits

8

[JS80, SS77, TT94, RY08b] and multilinear formulas [Raz09, Raz06, RY08a].

Finally, we present several approaches for proving lower bounds on circuit-size, and discuss the
possibility of generalizing the Natural Proofs approach of Razborov and Rudich [RR97] to the alge-
braic setting.

1.4.3 Polynomial Identity Testing

Polynomial identity testing (PIT) is the problem of deciding whether a given arithmetic circuit
computes the identically zero polynomial. Many randomized algorithms are known for this problem
yet its deterministic complexity is still far from understood. Recently, it was discovered that this
problem is strongly related to the question of proving lower bounds [KI04].

In Section 4 we first survey and sketch the proofs of randomized algorithms for PIT. We then
discuss the relation between lower bounds and derandomization of PIT algorithms. One of the
surprising results in this context is that a deterministic (black-box) polynomial-time algorithms for
PIT of depth-4 arithmetic circuits implies a (quasi-polynomial time) derandomization of the problem
for general arithmetic circuits.

We then present several deterministic algorithms for restricted classes of arithmetic circuits. We
do not cover all known algorithms but rather present what we view as the most notable techniques
in the area. Specifically, we give one of the many algorithms for sparse polynomials [KS01]. We
show a polynomial-time algorithm for PIT of noncommutative formulas that is based on the partial
derivative method [RS05]. We then describe two algorithms for depth-3 circuits with a bounded top
fan-in. The first is the local ring algorithm of [KS07] that works in the non-black-box model (which
we refer to as the white-box model) and the second is the algorithm of [DS06, KS08] that is based
on the rank method (with the strengthening of [SS09, KS09b, SS10]). After that, we present two
results for depth 4 circuits. The first is by [Sax08] that gave a polynomial time PIT for the so called
diagonal circuits, based on the ideas of [RS05]. The second result is by [KMSV10] that gave a PIT
algorithm for depth-4 multilinear circuits with bounded top fan-in, based on ideas from [KS08] and
[SV09]. Finally, we present the algorithm of [SV08, SV09] for identity testing of sums of read-once
formulas that strengthen some of the results for depth-3 circuits and that influenced [KMSV10].

1.4.4 Reconstruction of Arithmetic Circuits

In Section 5 we consider the problem of reconstructing arithmetic circuits, which is the algebraic
analog of the learning problem of Boolean circuits. This problem is clearly related to PIT, as an
identity testing algorithm for a circuit class gives a way of distinguishing between different circuits
from that class and can thus be helpful in designing a learning algorithm.

We discuss the similarities and differences between the reconstruction problem and analogous
problems in the Boolean world. We then give some hardness results on the reconstruction problem.
After that we discuss several known reconstruction algorithms. First, we explain how to reconstruct
sparse polynomials. Then we discuss the multiplicity automata technique of [BBB+00] and its
extension for arithmetic circuits [KS06]. Basically, this technique can be thought of as learning via
partial derivatives. At the end, we move to depth-3 circuits with a bounded top fan-in and sketch
the algorithms of [Shp09, KS09a] that are based on ideas from the identity testing algorithm of

9

[DS06, KS09a].

1.5 Additional Reading

We decided to focus this survey on recent results in arithmetic circuit complexity, mainly on lower
bounds and identity testing algorithms, and so many beautiful results in algebraic complexity, both
new and old, were left out. We now mention some of the topics that are not discussed in this mono-
graph and give references to relevant papers. Most of these topics are discussed in the comprehensive
book [BCS97] and the (unfortunately, still relevant) survey of Strassen [Str90].

One important area that we do not cover is algorithms for algebraic problems, an area that
has been yielding many beautiful works. A partial list of algorithms include Cooley and Tukey’s
FFT algorithm [CT65], fast matrix multiplication [CW90] (and the new algorithmic approach of
[CU03, CKSU05]), efficient polynomial factorization (see the surveys [vzG06, Kal03] and the recent
[KU08]) and the deterministic primality testing algorithm of [AKS04].

Another topic that we do not really discuss is that of linear and bilinear complexity. Here, one is
interested in the complexity of computing linear transformations and bilinear forms using linear or
bilinear circuits, respectively. The complexity of computing univariate polynomials is another topic
that we decided not to include. The interested reader is referred to the aforementioned book [BCS97]
and survey [Str90].

Several other models of algebraic computations also received a lot of attention. Among them we
mention the Blum–Shub–Smale model of computing over the reals and algebraic decision trees, more
information can be found in [BCS97, BCSS97, AB09].

10

Chapter 2

Structural Results

Arithmetic circuits, are very structured compared to Boolean circuits. For example, in the algebraic
world we have useful notions such as degree, homogeneity, and partial derivatives that do not have
“nice” counterparts in the Boolean world. In this section, we discuss some results that describe
deep understanding regarding the structure of arithmetic circuits that were obtained in the last four
decades. Some of these results are fairly basic, like transforming a circuit into a homogeneous one.
But others, such as the seminal work [VSBR83] showing that in the arithmetic world P = NC2,
are more sophisticated. We will try and give the main ideas underlying each of the results without
necessarily giving full proofs.

We begin this Section by proving a basic result: the existence of universal arithmetic circuits
(Theorem 2.1). This result plays an important role in the Elusive functions approach of Raz [Raz08]
that we present in Section 3.8.3 (although, for simplicity, we present there a specific instance that
does not rely on Theorem 2.1). We then discuss Homogenization (Theorems 2.2 and Theorem 2.3)
and multilinearization of arithmetic circuits. After that we move to discussing the important result
of Baur and Strassen on computing partial derivatives (Theorem 2.5). Following that we describe
results on depth reduction (Theorems 2.6, 2.7 and 2.9), and prove Theorem 1.3. We end this Section
by explaining how to cope with division gates (Theorems 2.11 and 2.12).

2.1 Universal Circuits

We start with a basic result of Raz [Raz08] showing the existence of a universal arithmetic circuit.

Recall that a polynomial f is homogeneous if all of its monomials have the same degree. Given
a polynomial f , we denote by Hi(f) its homogeneous part of degree i. Namely, all monomials of
degree exactly i appearing in f . Clearly, f =

∑r
i=0Hi[f], where r is the degree of f . We say that a

circuit is homogeneous if each of its gates computes a homogeneous polynomial.

Definition 2.1 (Universal circuits). A circuit Φ is called universal for n inputs and n outputs
circuits of size s, that compute homogenous polynomials of degree r, if the following holds: For every
n homogeneous polynomials f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) of degree r, that can be simultaneously
computed by a circuit of size s, there exists a circuit Ψ computing f1, . . . , fn as well, such that the
computation graph of Ψ is the same as the graph of Φ.

11

In other words, a circuit is universal if for any circuit Ψ of size s, there is an appropriate labelling
of the inputs of Φ such that the resulting circuit computes the same polynomials as Ψ. Alternatively,
every circuit Ψ is a “projection” of the universal circuit.

The universal circuit that we shall describe has the following additional structure, which gives
some information on “how do arithmetic circuits compute polynomials.” Let Φ be a homogenous
circuit. We say that Φ is in a normal-homogenous-form if it satisfies the following properties: 1. All
input gates are labelled by a variable, specifically, no input gate is labelled by a field element. 2. All
edges leaving input gates are connected to sum gates. 3. All output gates are sum gates. 4. Gates
are alternating, namely, if v is a product gate and u is a child of v then u is a sum gate, and vice
versa. 5. The fan-in of every product gate is exactly two (we do not restrict the fan-in of sum gates).
6. The out-degree of every addition gate is at most one.

The following theorem tells us that we can efficiently construct a universal circuit.

Theorem 2.1 ([Raz08]). For any nonzero integers s ≥ n and r, we can construct in time poly(s, r)
a circuit Φ in a normal-homogenous-form with at most O(r4s) nodes that is universal for n inputs
and n outputs circuits of size s that compute homogenous polynomials of degree r.

Sketch. The proof is in two steps. First we show that for every circuit Ψ there exist a circuit in
normal-homogeneous-form computing the same polynomial. More accurately, Ψ will be a “projec-
tion” of the circuit that we will find. Then we show that how to construct a universal circuit by
basically demonstrating a circuit that contains as “sub-circuits” all possible normal-homogeneous-
form circuits (with the appropriate set of parameters).

Assume that we are given a circuit Ψ, computing a polynomial f , that we wish to “embed”
in the universal circuit. Theorem 2.2 below shows that there exists a homogeneous circuit, of size
O(r2s), computing H0(f), . . . ,Hr(f) simultaneously. While this circuit is not necessarily in normal-
homogeneous-form, we can make it such by a few simple changes: Condition 1 is easily satisfied by
labelling input gates by new variables when needed (thus, f is a obtained by substituting values to
some variables of the new circuit). Condition 2,3 and 6 are satisfied by adding a few sum gates when
needed. Condition 4 is satisfied by adding product gates when needed. Condition 5 is satisfied as
we do not change the fan-in of product gates.

It remains to show that the graph we obtained can be embedded in a universal graph. The proof
of Theorem 2.2 gives a bound on the number of sum and product gates in the circuit that we obtained
at the end of the first step. Assume that there were s+ sum gates and s× product gates. Consider a
circuit consisting of 2r alternating levels of sum and product gates containing s+ and s× gates each,
respectively. Now, for every possible edge between a sum gate and a product gate we put a little
gadget, involving a new “help-variable”, such that by setting the help-variable to 0 we essentially
“erase” the edge and by setting it to 1 we keep the edge. It is not difficult to see that such a gadget is
easy to construct and therefore we basically cover all possible circuits of normal-homogeneous-form
(of a certain size and degree) in this way. It is clear that the circuit that was obtained in the first
step can be computed by making the appropriate assignment to the variables of this circuit.

12

2.2 Homogenization

We now discuss a simple and useful property of algebraic computation. Namely, that we can de-
compose any computation to its homogeneous parts without increasing the size by too much. This
useful observation is implicit in Ref. [Str73b].

Theorem 2.2 ([Str73b]). If f has an arithmetic circuit Φ of size s, then for every r ∈ N, there is a
homogeneous circuit Ψ of size at most O(r2s) computing H0[f], H1[f], . . . ,Hr[f].

This transformation allows us to assume without loss of generality that circuits for families in
VP have polynomial degrees as well, i.e. that all their intermediate computations are also low degree
polynomials.

Sketch. We describe how to construct Ψ. For every gate v in Φ, we define r + 1 gates in Ψ, which
we denote (v, 0), . . . , (v, r), in such a way that (v, i) computes Hi(Φv). We construct Ψ inductively
as follows. If v is an input gate, we can clearly define (v, i) as an input gate with the appropriate
properties. If Φv = Φu + Φw, define Ψ(v,i) = Ψ(u,i) + Ψ(w,i) for all i. If Φv = Φu × Φw, define

Ψ(v,i) =
∑i

j=0 Ψ(u,j) ×Ψ(w,i−j). Induction implies that Ψ has the claimed functionality. Every gate

in Φ corresponds to at most O((r+1)2) gates in Ψ (each product gate requires O((r+1)2) additional
sum gates), and so |Ψ| = O(r2s).

The process described above takes a general circuit and transforms it into a homogeneous one
with the same functionality while not increasing the size by much. However, as described this process
may increases the depth by a factor that is logarithmic in the degree (due to the loss in each product
gate). In the case of formulas, an increase in depth is translated to the exponent. In particular, it may
transform a general formula of size s to a homogeneous formula of size sO(log r). Thus, this procedure
is not efficient when working with formulas. Recently, Raz [Raz10] showed that, for a certain range
of parameters, one can obtain an efficient construction for formulas as well. For example, it follows
from Raz’s work that a polynomial size formula computing a homogeneous polynomial of degree
O(log n) can be assumed to be homogeneous, without loss of generality.

Theorem 2.3 ([Raz10]). Let f be a homogeneous polynomial of degree r that can be computed
by an arithmetic formula of size s. Then, f can be computed by a homogeneous formula of size
poly(s)

(
r+O(log s)

r

)
.

Sketch. Let Φ be a formula of size s computing f . Theorem 2.6 below, which is a simple observation,
tells us that we can assume, without loss of generality, that the depth of Φ is at most O(log s). This
may cause a polynomial increase in size.

The homogeneous formulas that we shall construct will have depth O(log s·log r), but nevertheless
their sizes will be much smaller than 2O(log s·log r). The basic construction is similar to the one in
Theorem 2.2 and the main difference is that we count the number of times each gate is “used” in a
more accurate way.

For every integer d, denote by Gd the family of monotone non-increasing functions χ from
{0, 1, . . . , d} to {0, 1, . . . , r}. I.e., all functions χ satisfying χ(i+1) ≤ χ(i) for every i ∈ {0, . . . , d−1}.
Clearly, the size of Gd is

(
r+d+1
r

)
.

13

For every gate v in Φ, define the product-height of v, denoted ph(v), to be the number of product
gates on the path from v to the output gate. Here is how we transform Φ to a homogeneous formula
Ψ: Every gate v in Φ with ph(v) = d will be duplicated to |Gd| gates in Ψ labelled (v, χ), for
every χ ∈ Gd, so that Ψ(v,χ) computes Hχ(d)(Φv), the χ(d)’th homogeneous part of the polynomial v
computes in Φ. We construct Ψ by induction. When v is an input gate it is clear how to label (v, χ)
for all χ. When v = v1 + v2, then ph(v) = ph(v1) = ph(v2), and we define (v, χ) = (v1, χ) + (v2, χ)
for all χ. Finally, when v = v1 × v2, we do the following. Consider some χ ∈ Gd where d = ph(v).
For every ` ∈ {0, . . . , χ(d)}, define χ` ∈ Gd+1 as

χ`(i) =

{
χ(i) if i ∈ [d]
` if i = d+ 1

.

Set

(v, χ) =

χ(d)∑
`=0

(v1, χ`)× (v2, χχ(d)−`).

Induction implies that Ψ is homogeneous with the claimed functionality. The way we construct
Ψ also implies that it is a formula. The crucial point is that when v = v1 × v2, the function χ` tells
us for which value of χ we “used” the nodes (v1, χ`), (v2, χ`). The size of Ψ is as claimed, since the
number of times we duplicate each vertex is at most

(
r+depth(Φ)+1

r

)
≤
(
r+O(log s)

r

)
.

We do not know whether computing a polynomial by a homogeneous formula, when the degree
is not too small, can cause a severe blow-up in size.

Open Problem 2. Are homogeneous formulas super-polynomially weaker than general formulas?

In Ref. [HY09b] it was shown that for multilinear formulas (i.e. formulas that each of their gates
computes a multilinear polynomial, see Section 2.2.1) homogeneity is indeed a weakness. Namely,
in some cases, homogeneous multilinear formulas are super-polynomially weaker than multilinear
formulas.

2.2.1 Multilinearization

As with homogenization we can study the task of transforming a circuit computing a multilinear
polynomial into a multilinear circuit. In contrast to homogenization, the most efficient way known
today for transforming a general circuit to a multilinear one, causes an exponential blowup in size
[NW96]. In spite of this, we do not have strong lowers bound for multilinear computation (see
Section 3.6). Thus, we do not know whether this loss in size is necessary or not. Specifically, the
following question is open.

Open Problem 3. Are multilinear circuits super-polynomially weaker than general circuits?

Furthermore, given a multilinear circuit it is very natural to try and transform it into a syntac-
tically multilinear circuit. However, the following question is still open.

Open Problem 4. Are multilinear circuits super-polynomially more powerful than syntactically
multilinear circuits?

14

If instead of circuits we were to consider formulas then the situation becomes much simpler. In
particular, syntactically multilinear formulas are equivalent to multilinear formulas [Raz09].

Theorem 2.4 ([Raz09]). If f can be computed by a multilinear formula of size s, then f can also
be computed by a syntactically multilinear formula of size s.

Sketch. The idea is to go over the formula gate by gate and guarantee that it satisfies the necessary
condition. Let v = v1 × v2 be a gate in a multilinear formula Φ and assume that x ∈ Xv1 ∩ Xv2 .
As Φ is multilinear, the polynomial Φv = Φv1Φv2 is multilinear, and so the degree of x in either Φv1

or Φv2 is zero. Without loss of generality, assume that the degree of x in Φv1 is zero. In this case,
substitute x = 0 in Φv1 . This does not affect the overall functionality of Φ.

2.3 Partial Derivatives

We now describe a fairly surprising result by Baur and Strassen [BS83]. We start by defining the
notion of partial derivatives. The partial derivative with respect to a variable x is defined as follows:
∂x(x) = 1, and for a polynomial f that does not contain x, ∂x(f) = 0. To define ∂x(f) for a general
polynomial, we use the two identities ∂x(f + g) = ∂x(f) + ∂x(g) and ∂x(fg) = ∂x(f)g + f∂x(g).
It is not difficult to prove that this is a well defined notion that makes sense over any field. Note
however that while the definition is the same for all fields, a partial derivative can behave differently
over different fields. For example, over the real numbers ∂x(x2) = 2x, while over the field with two
elements ∂x(x2) = 0. A useful property of this definition is that it satisfies the chain rule for partial
derivatives.

Baur and Strassen showed that computing f(x1, . . . , xn) is as hard as simultaneously computing
the n+ 1 polynomials f, ∂x1(f), . . . , ∂xn(f).

Theorem 2.5 ([BS83]). Let f(x1, . . . , xn) be a polynomial that has a circuit Φ of size s and depth d.
Then, there exists a circuit Ψ of size O(s) and depth O(d) computing (simultaneously) the polynomials
∂x1(f), . . . , ∂xn(f).

This result is very interesting as a priori one might expect that the circuit complexity of
∂x1(f), . . . , ∂xn(f) will be of order n · s rather than O(s), as these are n polynomials that are,
intuitively, “as complex” as f is.

To prove the theorem we need to define how to take a partial derivative with respect to a gate
of the circuit. We give a slightly more general definition than what the proof requires as it will be
useful in Section 2.4. Let v, w be two gates in Φ and denote by fv and fw the polynomials computed
at v and w, respectively. Let Φw=y be the circuit in which we delete the two edges entering w and
label it with a new variable y (if w is an input gate then we simply label it with y). Denote by
fv,w(X, y) the polynomial computed by v in Φw=y. Finally, define

∂wfv = (∂yfv,w)|y=fw ,

namely, the polynomial obtained by substituting fw to y in the polynomial ∂yfv,w. Clearly, the
polynomial ∂wfv is defined over the variables X.

15

Proof. We prove the existence of Ψ by induction on s, computing derivatives from the root down (in
fact, we describe how to construct Ψ given Φ). If Φ is an input gate, constructing Ψ is straightforward.
Otherwise, let v be the deepest gate in Φ (i.e. the gate that is the farthest from the output gate)
and denote its children, which are input gates, by u,w. Consider the circuit Φv=y, and denote its
output polynomial by fv=y. As we deleted two edges, Φv=y is smaller than Φ. By induction, there
exists a circuit Ψ′ computing ∂x1(fv=y), . . . , ∂xn(fv=y), ∂y(fv=y) of size O(s − 1). Denote by X ′ the
set of variables that label either u or w in Φ (X ′ could be empty). Note that f = fv=y

∣∣
y=fv

, where
fv is the polynomial that v computes in Φ. The chain rule for partial derivatives implies that for
every xi,

∂xi(f) = ∂xi(fv=y)
∣∣
y=fv

+ ∂y(fv=y)
∣∣
y=fv

· ∂xi(fv).

Therefore, for every xi 6∈ X ′, ∂xi(f) = ∂xi(fv=y)
∣∣
y=fv

. Since ∂xi(fv) is either a variable or a field

element, and since the size of X ′ is at most two, we can compute {∂xi(f)}xi∈X′ by adding at most a
constant number of gates and using the gates in Ψ′. The size of Ψ is thus at most O(s− 1) +O(1) =
O(s). The statement about the depth follows by induction as well.

Theorem 2.5 shows that computing the first partial derivatives of an arithmetic circuit is an
easy task. What about second order partial derivatives? We can define ∂xi,xj (f) = ∂xi(∂xj (f)) (the
order does not matter). It is not known whether one can compute all the order n2 second partial
derivatives with only a constant increase in size. Having such a result will automatically imply an
optimal circuit for matrix multiplication: Assume we wish to multiply two n × n matrices A,B.
Consider the polynomial xABy with x, y two n-dimensional vectors. This polynomial has an O(n2)
size circuit as we can compute xA and By and then take their inner product. On the other hand,
the second partial derivative of xABy with respect to xi, yj is (AB)i,j . Therefore, if the answer to
the following open problem is positive then we can multiply two matrices in time O(n2).

Open Problem 5. Does an analog of Theorem 2.5 hold for second order partial derivatives?

We mention that Raz [Raz03] showed that any bounded-coefficients circuit (i.e., a circuit that
uses only, say, real numbers of absolute value at most one) computing the product of two n × n
real matrices must be of size at least Ω(n2 log n) (see Section 3.7). This lower bound rules out the
possibility that a transformation like the one in Ref. [BS83] (namely, a transformation that does not
introduce large constants) can yield a constant blow-up in size for computing second order partial
derivatives.

2.4 Depth Reduction

In this section we discuss depth reduction for arithmetic computation. The main idea will be to
express the circuit using partial derivatives of intermediate computations. We start by discussing
some properties of partial derivatives. In what follows we consider a homogeneous circuit Φ and use
the notations introduces in Section 2.3.

Claim 2.1. Let v, w be two gates of a homogeneous circuit Φ. Denote with fv and fw the polynomial
computes by v and w, respectively.

16

1. Either ∂wfv is zero or ∂wfv is a homogeneous polynomial of total degree deg(v)− deg(w).

2. Assume that v is a product gate with children v1 and v2 such that deg(v1) ≥ deg(v2). If deg(w) >
deg(v)/2 then ∂wfv = fv2 · ∂wfv1 .

3. Assume that v is a sum gate with children v1 and v2. Then ∂wfv = ∂wfv1 + ∂wfv2 .

Proof. To see item 1 recall that both fv, fw are homogeneous. As fv = fv,w|y=fw , and by definition
of ∂wfv, it follows that if ∂wfv is nonzero then it is of degree deg(v)− deg(w). For item 2 note that
since v is a product gate, deg(v) = deg(v1)+deg(v2). By assumption we have deg(v2) < deg(w). The
gate w is thus not in the sub-circuit rooted at v2 (as the circuit is homogeneous). Hence ∂wfv2 = 0.
Item 3 follows from the definition of ∂wfv.

We start with the simplest type of depth reduction, that of formulas (such a reduction holds for
Boolean formulas as well).

Theorem 2.6. Let f be computed by an arithmetic formula of size s. Then f can also be computed
by an arithmetic formula of depth O(log s) (and hence of size poly(s)).

Sketch. The proof is by a simple induction on the formula size. For simplicity, in this proof we define
the size of a formula to be the number of input gates in it (this is the same as the number of edges
up to a constant factor). Let Φ be a formula of size s computing f . Let v be the root of Φ. Choose a
vertex w in Φ so that s/3 ≤ |Φw| ≤ 2s/3. Such a vertex always exists as if w is a gate with children
w1, w2 then |Φw| = |Φw1 | + |Φw2 |. Since Φ is a formula, fv,w is linear in y (recall the definition of
fv,w in Section 2.3). I.e. fv,w = ∂yfv,w · y + fv,w|y=0. This implies that

f = fv = fv,w|y=fw = ∂wfv · fw + fv,w|y=0. (2.1)

Each of the polynomials fw, fv,w|y=0 is computed by a formula of size at most 2s/3. It can also be
shown that ∂wfv can be computed by a formula of size |Φv| − |Φw| ≤ 2s/3 (this follows by induction
on v). Therefore, induction on s implies that each of these three polynomials can be computed by a
formula of depth O(log(s)− log(2/3)). Equation (2.1) completes the proof.

We continue with the more elaborate depth reduction, that of circuits. It exhibits a remarkable
property of arithmetic circuits: without loss of generality, we can assume that polynomial size circuits
of polynomial degree are of poly-logarithmic depth. This was proved in the seminal work [VSBR83].
Such a property is not believed to hold in the Boolean setting. One example of its power is that the
determinant of an n × n matrix can be computed by a polynomial size circuit of depth O(log2 n)
(although the first prove of this claim [Csa76] did not use a depth reduction).

Theorem 2.7 ([VSBR83]). For every homogeneous degree r polynomial f computed by a circuit Φ
of size s, there is a homogeneous circuit Ψ of size poly(r, s) computing f with the following additional
structure. (1) The circuit Ψ has alternating levels of sum and product gates. (2) Each product gate
v in Ψ computes the product of five polynomials, each of degree at most 2 deg(v)/3. (3) Sum gates
have arbitrary fan-in. In particular, the number of levels in Ψ is O(log r).

17

It is clear that Theorem 2.7 implies Theorem 1.3, which states that if f is a polynomial of degree
r computed by a size s circuit, then f can be computed by a size poly(s, r) circuit with fan-in at
most two of depth O(log r(log r + log s)).

Proof. To prove the theorem we shall use properties of partial derivatives in order to express fv, ∂wfv
as functions in lower degree polynomial, as we now describe. For an integer m ∈ N, denote by Gm the
set of multiplication gates t in Φ with children t1 and t2 such that m < deg(t) and deg(t1), deg(t2) ≤
m.

Claim 2.2. Let m > 0 be an integer, and let v, w be two gates so that deg(w) ≤ m < deg(v) <
2 deg(w). Then,

fv =
∑
t∈Gm

ft · ∂tfv and ∂wfv =
∑
t∈Gm

∂wft · ∂tfv.

Proof. We first show that fv =
∑

t∈Gm ft · ∂tfv.
Since m < deg(v), there is a directed path from (at least one gate in) Gm to v in Φ. We prove

the claim by induction on the length of the longest directed path from Gm to v. Let v1 and v2 be
the children of v in Φ.

Induction Base: Assume that v ∈ Gm. Thus, deg(v1) ≤ m and deg(v2) ≤ m. So, every gate t
in Gm, other than v, is not in Φv, which implies that ∂tfv = 0. Hence, since ∂vfv = 1,

fv = fv · 1 +
∑

t∈Gm:t6=v
ft · 0 =

∑
t∈Gm

ft · ∂tfv.

Induction Step: Consider the following two cases:

Case one: Assume that v is an addition gate. Since the circuit is homogeneous, deg(v1) =
deg(v2) = deg(v) (otherwise we can ignore one of the gates). So, by induction,

fv1 =
∑
t∈Gm

ft · ∂tfv1 and fv2 =
∑
t∈Gm

ft · ∂tfv2 .

Claim 2.1 hence implies that

fv = fv1 + fv2 =
∑
t∈Gm

ft · (∂tfv1 + ∂tfv2) =
∑
t∈Gm

ft · ∂tfv.

Case two: Assume that v is a product gate, and assume without loss of generality that deg(v1) ≥
deg(v2). Since v 6∈ Gm, we have m < deg(v1) ≤ 2m. So, by induction,

fv1 =
∑
t∈Gm

ft · ∂tfv1 .

For all gates t ∈ Gm, we have deg(v) ≤ 2m < 2 deg(t). By Item 2 of Claim 2.1 we get

fv = fv1 · fv2 =
∑
t∈Gm

ft · (fv2 · ∂tfv1) =
∑
t∈Gm

ft · ∂tfv.

The proof of the second claim, i.e. that ∂wfv =
∑

t∈Gm ∂wft · ∂tfv, follows the same lines and is
left to the reader.

18

We now proceed with the proof of Theorem 2.7. First, we assume without loss of generality
that s ≥ n. Second, using Theorem 2.2, we can assume without loss of generality that the circuit
computing f , Φ, is a homogeneous arithmetic circuit of size s′ = O(r2s). To prove the theorem we
construct Ψ. The construction is done in steps where at the i’th step we do the following:

1. Compute all polynomials fv, for gates v in Φ such that 2i−1 < deg(v) ≤ 2i.

2. After we finish the first part, we compute all polynomials ∂wfv, for all (appropriate) gates v, w
so that

2i−1 < deg(v)− deg(w) ≤ 2i and deg(v) < 2 deg(w).

We will show that we can preform the first part of the i’th step by adding a layer consisting of O(s′2)
product gates, of fan-in at most 3, and a layer of O(s′) sum gates, each of fan-in O(s′). Similarly, for
the second part we need to add a layer consisting of O(s′3) product gates, of fan-in at most 3, and
a layer of O(s′2) sum gates, each of fan-in O(s′), to the circuit that was computed in the first part.
Overall, this increases the size by O(s′3) and the depth by O(1).

The Construction of Ψ

We use the following conventions: Gates in Φ are denoted by v, t and w. For a gate v, we denote
by v′ the gate in Ψ computing fv. For two (appropriate) gates v, w, we denote by (w, v) the gate in
Ψ computing ∂wfv.

Step 0: For every gate v in Φ such that deg(v) ≤ 1, the polynomial fv is linear. So, since s′ ≥ n,
we can compute fv with a linear arithmetic circuit of size O(s′) and depth O(1). For every two gates
v and w in Φ such that deg(v)−deg(w) ≤ 1, Claim 2.1 implies that ∂wfv is linear as well. So, again,
we can compute ∂wfv with a linear circuit of size O(s′) and depth O(1).

Step i+1: Assume that we already completed step i.

We first compute the fv’s. Let v be a gate of degree 2i < deg(v) ≤ 2i+1, and denote

m = 2i.

Recall that if a gate t is not in Φv, then ∂tfv = 0. Thus, by Claim 2.2,

fv =
∑
t∈Tv

ft · ∂tfv =
∑
t∈Tv

ft1 · ft2 · ∂tfv, (2.2)

where Tv is the set of gates t ∈ Gm, with children t1 and t2, such that t is in Φv. Clearly, m < deg(t) ≤
2m and deg(t1), deg(t2) ≤ m. Hence, deg(v)− deg(t) ≤ 2i+1 − 2i = 2i and deg(v) ≤ 2i+1 < 2 deg(t).
Therefore, ft1 , ft2 and ∂tfv were already computed. Using Equation (2.2), we can compute fv, using
previously computed gates, by adding one layer of O(s′) product gates with fan-in 3 and a sum gate
with fan-in O(s′).

It remains to compute the ∂wfv’s. Let v, w be two gates so that

2i < deg(v)− deg(w) ≤ 2i+1 and deg(v) < 2 deg(w).

Now, denote m = 2i + deg(w). Thus, deg(w) ≤ m < deg(v) < 2 deg(w). Recall that if a gate t is not
in Φv, then ∂tfv = 0. Also, by Claim 2.1, if a gate t admits deg(t) > deg(v), then ∂tfv = 0. Hence,
by Claim 2.2,

∂wfv =
∑
t∈Tv

∂wft · ∂tfv.

19

Clearly, for t ∈ Tv, we have deg(t) ≤ deg(v) < 2 deg(w). Denote the children of t ∈ T by t1 and
t2, and assume (without loss of generality) that w is in Φt1 . In particular, deg(w) ≤ deg(t1) and
deg(t1) ≥ deg(t2). Using item 2 of Claim 2.1, we obtain

∂wfv =
∑
t∈Tv

ft2 · ∂wft1 · ∂tfv. (2.3)

We now show that all the polynomials ft2 , ∂wft1 and ∂tfv were already computed, including the
first part of the i+ 1 step described above.

Since deg(v) ≤ 2i+1 + deg(w) ≤ 2i+1 + deg(t1) = 2i+1 + deg(t)− deg(t2), it holds that deg(t2) ≤
2i+1 + deg(t)− deg(v) ≤ 2i+1. Therefore, ft2 was already computed (perhaps in the first part of the
i+ 1 step).

As deg(t1) ≤ m = 2i+deg(w), we have deg(t1)−deg(w) ≤ 2i. Since deg(t1) ≤ deg(t) ≤ deg(v) <
2 deg(w), the polynomial ∂wft1 was already computed.

Finally, from deg(t) > m = 2i + deg(w), we get deg(v) − deg(t) < deg(v) − 2i − deg(w) ≤
2i+1 − 2i = 2i. Since deg(v) ≤ 2i+1 + deg(w) ≤ 2(2i + deg(w)) < 2 deg(t), the polynomial ∂tfv was
already computed.

Concluding, using Equation (2.3) we can thus compute ∂wfv by adding O(s′) product gates of
fan-in at most 3 and a sum gate of fan-in O(s′).

We thus almost completed the proof of Theorem 2.7. The only remaining problem may be that
not in every product gate the degrees of the children are small enough. By slightly modifying the
proof it is not hard to get the claim at the cost of increasing the fan-in of each multiplication gate
to 5 (e.g., by replacing ft1 , in Equation 2.2, with its expression as a sum of products of lower degree
polynomials, if needed).

A natural thing to ask is whether Theorem 2.7 can be strengthened if we have a bound on the
homogeneous formula complexity of f . The following theorem of Hrubeš and Yehudayoff [HY09b]
provides such a strengthening. We leave the proof as an exercise to the reader.

Theorem 2.8 ([HY09b]). For every homogeneous polynomial f of degree r computed by a homo-
geneous formula Φ of fan-in at most two and of size s, there exist degree r polynomials f1, . . . , fs′,
where s′ ≤ s + 1, such that the following holds. (1) f = f1 + . . . + fs′. (2). Every fi is of the form
fi = fi,1 ·fi,2 · · · fi,ki where (1/3)jr ≤ deg(fi,j) ≤ (2/3)jr and deg(fi,ki) = 1. (3) The total number of
variables in f1,k1 , . . . , fs′,ks′ , counted with multiplicities, is at most s. (4) Each fi,j can be computed
by a homogeneous formula of size at most s. (5) If Φ is multilinear then so are the formulas for the
fi,j’s.

Theorem 2.7 can also be used to imply the following “depth-4 version of Theorem 1.3” by [AV08].
Recall that ΣΠΣΠ is the class of depth-4 circuits composed of alternating levels of sum and product
gates with a sum gate at the top.

Theorem 2.9 ([AV08]). Let f(x1, . . . , xn) be a polynomial of degree r = O(n) over F. If there exists
a circuit of size s = 2o(r+r log(n/r)) for f , then there exists a ΣΠΣΠ circuit of size 2o(r+r log(n/r)) for
f as well. Furthermore, the fan-in of the top layer of product gates is bounded by `(n), where ` is
any sufficiently slowly growing function tending to infinity with n, and the fan-in of the bottom layer
of product gates is bounded by o(r).

20

Sketch. Consider the circuit guaranteed by Theorem 2.7. To prove the theorem, we break that circuit
to two parts: the first part is composed of the topmost t levels of multiplication gates together with
the addition gates above them, and the second part is the rest of the circuit. Consider the polynomial
computed by the first part (imagine that we connect new variables to the bottom layer of this circuit).
It is a polynomial of degree at most 5t in poly(r, s) variables, and hence can be computed by a depth-

2 circuit of size O(5t
(poly(r,s)+5t

5t

)
); this is the sum of monomials representation. On the other hand,

each gate in the second part computes a polynomial of degree at most D = deg(f)/(3/2)t, and hence
it has a depth-2 circuit of size order

(
n+D
D

)
. By composing these circuits we obtain a depth-4 circuit

of size O(5t
(poly(r,s)+5t

5t

)(
n+D
D

)
) computing f . Optimization over t completes the proof.

An immediate corollary of the above theorem is that if we can prove an exp(n) lower bound
for the size of depth-4 circuits, computing polynomials of degree Ω(n), then we automatically get
an exp(n) lower bound for the size of general arithmetic circuits! Very recently, Koiran [Koi10]
proved the following extension of Theorem 2.9, using the connection between arithmetic circuits and
arithmetic branching programs (see Section 3.4).

Theorem 2.10 ([Koi10]). Let f be an n-variate polynomial of degree r that can be computed by
a polynomial size arithmetic circuit. Then f can be computed by a ΣΠΣΠ circuit with nO(log r)

addition gates and nO(
√
r log r) multiplication gates. Furthermore, multiplication gates have fan-in at

most
√

3r + 1.

Thus, a 2n
1/2+ε

lower bound on the depth-4 complexity of the permanent (of n × n matrices) is
sufficient for separating VP from VNP. Currently, the best lower bound for depth-4 circuits (when
char(F) 6= 2) is of the form n1+c for some constant c > 0, see Refs. [Raz08, SS91].

Open Problem 6. Prove super-polynomial lower bounds for the size of depth-4 circuits over fields
of characteristic 6= 2.

2.5 Coping with Division Gates

A natural question to ask is why not add the division operator ÷ to the set of allowed arithmetic
operations. Indeed this model was considered in the past. Note that when we allow divisions, each
gate computes a rational function instead of a polynomial. Thus, we require that the circuit never
divides by the zero polynomial. An answer to the above question was first given by Strassen [Str73b].
Strassen showed that over infinite fields divisions do not add power to the model (more generally,
Strassen’s approach works when the field contains nonzeros for the polynomial that we divide by
[BvH82]). This result was recently extended to finite fields as well [HY09a]. In the proof of this
theorem we again use the homogenization procedure discussed above.

Theorem 2.11 ([Str73b, HY09a]). If a polynomial f ∈ F[x1, . . . , xn] of degree r can be computed
by an arithmetic circuit Φ of size s using the operations +,×,÷, then there is a circuit Ψ of size
poly(s, r, n) that uses only the arithmetic operations +,× and computes f .

Sketch. We start by sketching the proof for large enough fields. We first show that by slightly
increasing the size of the circuit we can assume that the only division gate appears at the top of the

21

circuit. In other words, we can assume that f = h÷g where h and g are computed by the two children
of the output gate, and the output gate is the only gate labelled by ÷. To see this, duplicate each gate
v to two gates (v,numerator) and (v,denominator) in a way such that (v,numerator) computes the
numerator of the rational function that v computes and (v,denominator) computes the denominator
of the function computed by v. This can be easily done using the following identities: h1/g1+h2/g2 =
(h1g2 + h2g1)/(g1g2), h1/g1 × h2/g2 = (h1h2)/(g1g2) and h1/g1 ÷ h2/g2 = (h1g2)/(h2g1).

Finally, we show how to eliminate the only division gate. Write f = h/g. Since the field is large
enough, g(α1, . . . , αn) 6= 0 for some α1, . . . , αn ∈ F. By translating the input and multiplying by a
field element, with a slight increase in size, we can thus assume that g(0, . . . , 0) = 1. In this case,

f =
h

g
=

h

1− (1− g)
=
∞∑
j=0

h(1− g)j ,

where the last equality means that every homogeneous part of f is the same as the homogeneous
part of the right hand side. As 1− g does not contain constants, the minimal degree of a monomial
in (1− g)j is j. Therefore, for every i ∈ {0, . . . , r},

Hi(f) =
∞∑
j=0

Hi(h(1− g)j) =
i∑

j=0

Hi(h(1− g)j).

We can therefore efficiently compute all the homogeneous parts of f , using the homogeneous parts
of the polynomials {h(1 − g)j : j ∈ [r]}, each of which has a circuit of size poly(s, r). Theorem 2.2
now completes the proof.

To prove the theorem for small fields, we need to “simulate” a large field. We now explain how
this can be done without increasing the size by much. To make a field F “larger” we consider a field
extension E of F that is large enough for our purposes (to eliminate divisions we need E to be of
size poly(r, n)). The point is that we can think of the elements of E as vectors with entries in F,
and can thus simulate the arithmetic operations over E by operations over F: If ā = (a1, . . . , ak)
and b̄ = (b1, . . . , bk) are two elements of E ∼= Fk, where k is the degree of E over F (k = O(log(rs))
suffices), then the sum of ā and b̄ over E is just the entry-wise sum of ā and b̄ as vectors in Fk. The
product of ā and b̄ over E can be defined coordinate-wise as (ā× b̄)i = λi(ā, b̄) for i ∈ [k], where λi
is a (fixed) bilinear form, namely, a k × k matrix with entries in F. To simulate a circuit over E by
a circuit over F, we “duplicate” each gate k times and simulate the arithmetic operations over E by
the arithmetic operations over F, as described above.

We have just seen that we can eliminate division gates from circuits without paying too much.
Can we do the same for formulas? It turns out that we can, as the following theorem shows.

Theorem 2.12. If a polynomial f ∈ F[x1, . . . , xn] of degree r can be computed by a formula Φ of
size s using the operations +,×,÷ when the size of F is at least sr + 1, then there is a formula Ψ
computing f that uses only +,× of size poly(s, r). For arbitrary finite fields, the size of Ψ is at most
(sr)O(log log(sr)).

Sketch. The proof is similar to the proof of Theorem 2.11. We, therefore, explain mostly the parts
of the argument that are different from the proof for circuits. Theorem 2.6 tells us that without loss

22

of generality the depth of Φ is O(log s). We transform Φ to a formula that has only one ÷ gate at
the top, as in the proof of Theorem 2.11. This step increases the depth of Φ by a constant factor,
so its depth remains O(log s). Write f = h/g, where both h and g have formulas of depth O(log s).
Again, for every i ∈ {0, . . . , r},

Hi(f) =

∞∑
j=0

Hi(h(1− g)j) =

i∑
j=0

Hi(h(1− g)j).

Each h(1− g)j has a formula Ψj of depth D = O(log s+ log r) and degree R ≤ rs. Unlike the case
of arithmetic circuits, we do not know an efficient way of transforming a formula to a homogeneous
form (unless the degree is small). However, this is not a problem as we do not need a homogeneous
formula, but rather we just need to compute Hi(Ψj).

When the field is large we achieve this by multiplying each variable xk in Ψj by a new variable
y to obtain a new formula Ψ′j(y) of depth O(D). We have that

Ψ′j(y) =
∑

i∈{0,...,R}

yiHi(Ψj).

We can thus evaluate Ψ′j(y) at R + 1 different y’s, and use interpolation to recover Hi(Ψj). Note
that the division operations required for interpolation are of field elements and not of polynomials.
This can be done using a formula of depth O(D + logR), in particular, a formula of size poly(r, s).

When the field is small, we need to work over a field extension of degree k ≤ O(log(rs)) over F.
To do this, as in Theorem 2.11 above, we can work with k×k matrices. This may increase the depth
by a factor of O(log k), which in terms of size means a factor of O(log k) in the exponent.

2.6 Discussion

In this section we proved several fundamental results on the structure of arithmetic circuits. We
have seen that there is a universal circuit, discussed efficient ways of transforming a circuit to a
homogeneous one, proved that first partial derivatives can be computed efficiently (simultaneously),
learned how to eliminate division gates, and more.

While the importance of results like Theorem 2.7 implying VP = VNC2 is evident, the significant
of the other results will become even clearer in Section 3, where they will play an instrumental role
in proving lower bounds for different models of arithmetic circuits. As we shall see in Section 3,
almost all known lower bound proofs can be presented as following a very general scheme: first prove
that polynomials that are computed by the underlying circuit class poses some “simple” structure.
This “simple” structure will help us to understand and isolate the “weaknesses” of that circuit class.
The lower bound will then follow by constructing an explicit polynomial that does not admit this
“simple” structure.

23

Chapter 3

Lower Bounds

In this section we survey most of the known lower bounds on the size of arithmetic circuits and
formulas. We start by discussing the existence of hard polynomials, i.e., polynomials that cannot
be computed by small circuits. We then consider lower bounds for explicit polynomials, namely,
polynomials in VNP. We first deal with lower bounds for general circuits and formulas, and then
move to lower bounds for restricted models, such as monotone, bounded depth and multilinear
circuits. To conclude, we describe several possible approaches for proving lower bounds.

3.1 Existence of Hard Zero-One Polynomials

Finding explicit hard polynomials is the goal we are after in this Section. In order to even start our
journey, we may ask ourselves “do there exist hard polynomials?” The answer to this question is, of
course, yes. Over finite fields, standard counting arguments tell us that there exist hard polynomials
with zero-one coefficients. The idea is to show that the number of polynomials that have small
circuits is much smaller than the total number of polynomials, and so most polynomials are in fact
hard. Over infinite fields, the existence of hard polynomials follows by counting dimensions instead
of counting polynomials, as there is an infinite number of circuits and polynomials. In particular, it
is less obvious how to prove the existence of hard polynomials with zero-one coefficients, over infinite
fields.

In Ref. [HY09a] it was shown1 that over any field there exist hard polynomials with zero-one
coefficients. The proof uses notions from algebraic geometry, the degree and the dimension of a
variety, to show that there are few polynomials with zero-one coefficients that are computed by small
circuits.

Theorem 3.1. For every n, r ∈ N and for every field F, there exists a polynomial f in F[x1, . . . , xn]

of degree r with zero-one coefficients so that every circuit computing f has size at least Ω
(√(

n+r
r

))
.

A key observation behind this proof is thinking of a circuit as defining a polynomial map. We
shall discuss this idea in more detail in Section 3.8 below.

1In Ref. [vzG87] it is claimed, without a proof, that the methods of Heintz and Sieveking [HS80b] imply a similar
statement.

24

Sketch. Our goal is to show that the number of polynomials with zero-one coefficients that are
computed by small circuits is small. The tricky part is to count this number when the field is infinite
as, for example, there are infinitely many circuits of size one. To do so, we use a dimension argument,
which is encapsulated in the following lemma. We will not prove the lemma (its proof relies on an
appropriate dimension argument).

Lemma 3.1 ([HY09a]). Let F be a field, and let F : Fn → Fm be a polynomial map of degree r > 0
(i.e. each coordinate of F is an n-variate polynomial of degree at most r). Then |F (Fn)∩{0, 1}m| ≤
(2r)n.

To use this lemma we show how to construct a polynomial map from each circuit. For a circuit
Φ of size at most s and degree at most r in the variables X = {x1, . . . , xn}, let Ψ be the circuit
obtained by replacing every field element that occurs in Φ by a new variable zi, i ∈ [s]. The circuit
Ψ thus computes a polynomial in the variables X and Z = {zi}i∈[s]. We call such a circuit Ψ a
skeleton, as it contains no field elements. The circuit Φ is thus a projection of Ψ: the polynomial
computed by Φ can be obtained from the polynomial computed by Ψ by an appropriate substitution
of field elements to the variables Z.

We now explain how the polynomial computed by Ψ can be viewed as a polynomial map F = FΨ

from Fs to FN , with N =
(
n+r
r

)
. The coordinates of F are labelled by monomials M of degree at

most r in the variables X, and we denote F = (FM)M . There are N such monomials, and so there
are N entries in F . The entry FM ∈ F[Z] is the coefficient of the monomial M in the polynomial
computed by Ψ. In particular, each entry FM is a polynomial of degree at most 2s in the Z variables.
Thus, F is a degree 2s polynomial map.

We conclude that when Φ computes a polynomial with zero-one coefficients, then the vector of
coefficients it is contained in the image of FΨ. However, Lemma 3.1 tells us that the size of the image
of FΨ inside {0, 1}N is at most (2s+1)s = 2O(s2). Thus every skeleton can “cover” at most 2O(s2)

such polynomials. We are almost done. It remains to observe that there are relatively few skeletons:
by counting the number of directed acyclic graphs (there are no field elements in a skeleton) we see
that the number of skeletons is at most sO(s) ≤ 2O(s2).

This implies that the number of polynomials with zero-one coefficients that can be computed
by circuits of size at most s is at most 2O(s2). To complete the proof, notice that the number of
polynomials with zero-one coefficients in n variables and degree r is 2N . This implies that most
polynomials in n variables and degree r require circuits of size at least Ω(

√
N).

3.2 General Circuits and Formulas

We now describe Strassen’s super-linear lower bound on the size of general circuits [Str73a]. As a
comparison, we mention that no super-linear lower bound on the size of Boolean circuits is known.

Theorem 3.2 ([Str73a]). Every circuit computing the n polynomials xr1, . . . , x
r
n has size Ω(n log r).

Sketch. The key ingredient in the proof is Bezout’s theorem from algebraic geometry, which states
the following. For every k polynomials f1, . . . , fk of degrees r1, . . . , rk over some set of variables, the
number of solutions (with multiplicities) to the k equations f1 = f2 = · · · = fk = 0 is either at most

25

r1 · r2 · · · rk or infinite. For example, when fi = xri − 1, i ∈ {1, . . . , n}, the number of solutions to the
equations is rn when the field is algebraically closed.

Now, assume that there is a circuit Φ of size s computing xr1, . . . , x
r
n. The goal is to show that

the circuit Φ defines a list of roughly s degree two equations whose solution set is “equivalent” to
the set of solutions of xr1 − 1 = · · · = xrn − 1 = 0. By Bezout’s theorem this will imply that s must
be large. Here is a sketch of the argument. For every gate v in Φ, introduce a new variable yv. For
every input gate v in Φ labelled by α, which is either a variables or a field element, write the equation
yv − α = 0. For every v = u ? w with ? ∈ {+,×}, write the equation yv − (yu ? yw) = 0. For every
output gate v (i.e., a gate computing xri) also write the equation yv − 1 = 0. We thus have a list of
at most 2s equations in the variables x1, . . . , xn and {yv}v∈Φ, each of degree at most two. Denote
this list of equation by E . It is not hard to see that since Φ computes xr1, . . . , x

r
n, every solution to

xr1 − 1 = · · · = xrn − 1 = 0 gives a solution to E and vice versa. Bezout’s theorem tells us that the
number of solution to E is at most 22s, as the number of solutions is finite. Therefore, rn ≤ 22s or
s ≥ Ω(n log r).

Remark 3.1. The proof actually shows that the number of product gates in Φ is at least Ω(n log r).
This lower bound is tight, as there is a circuit of size O(n log r) computing these polynomials.

The lower bound above is for a circuit computing a family of n polynomials. However, Baur and
Strassen managed to get such a lower bound for a circuit computing a single polynomials [BS83].
The idea is to use Theorem 2.5 and define a polynomial whose partial derivatives are the xri -s.

Theorem 3.3 ([Str73a, BS83]). The size of a circuit computing xr1 + · · ·+ xrn is at least Ω(n log r),
as long as r does not divide the characteristic of the underlying field.

Proof. Theorem 2.5 implies that if there is a circuit of size s for xr1 + · · ·+ xrn, then there is a circuit
of size at most O(s) computing rxr−1

1 , . . . , rxr−1
n . Theorem 3.2 thus implies that s ≥ Ω(n log r).

Improving this lower bound is a long-standing open problem.

Open Problem 7. Prove a better lower bound for general circuits. For example, prove a super-linear
lower bound for the size of a circuit computing an explicit polynomial of constant degree.

For arithmetic formulas better lower bounds are known. Kalorkoti proved an Ω(n3) lower bound
on the formula-size of determinant [Kal85]. His argument can be thought of as the algebraic analog
of Nechiporuk’s argument (for the Boolean setting), that gives a lower bound on the Boolean formula
size of a Boolean function f by counting the number of different sub-functions of f . Kalorkoti also
proved a quadratic lower bound on the size of formulas computing

∑
i∈[n]

∑
j∈[n] x

j
iyj (the lower

bound for determinant is not quadratic in the number of variables). This quadratic lower bound is
tight, and so this method cannot be used to prove stronger lower bounds.

Theorem 3.4 ([Kal85]). Every formula computing the determinant of an n× n matrix is of size at
least Ω(n3).

In contrast, the smallest formula computing determinant is of size nO(logn).

Sketch. We use the notion of transcendental degree (abbreviated td). A set of polynomials

26

g1, . . . , gt ∈ F[X] is said to be algebraically independent if the only polynomial F ∈ F[y1, . . . , yt]
satisfying F (g1, . . . , gt) ≡ 0 is the zero polynomial. Define td(g1, . . . , gt) as the maximal size of a
subset S of [t] so that {gi}i∈S are algebraically independent. Using this notion we define the following
complexity measure for polynomials: Let f ∈ F[X] be a polynomial and X ′ ⊂ X a set of variables.
The measure tdX′(f) is defined as follows. Expand f according to X ′, namely, write f =

∑
q∈Q gq ·q,

where Q is the set of all monomials (including the monomial 1) in X ′ of degree at most deg(f), and
each gq is a polynomial in X \X ′. Define tdX′(f) as the transcendental degree of {gq}q∈Q.

The main step in Kalorkoti’s proof is the following lemma (he considers the case when division
gates are allowed, which makes his proof somewhat more elaborate).

Lemma 3.2. Let f ∈ F[X] and X1, . . . , Xt be a partition of X. Then every arithmetic formula for
f must be of size at least Ω(

∑
i∈[t] tdXi(f)).

Sketch. The basic property we shall use is that for every X ′ ⊆ X and two polynomials f1 and f2,
both tdX′(f1 + f2) and tdX′(f1 · f2) are at most tdX′(f1) + tdX′(f2). With this in mind, the lemma
follows by induction on the size of the smallest formula Φ computing f . If Φ is a single variable,
the lemma trivially holds as tdXi(x) is one if x is in Xi and zero otherwise. If Φ = Φ1 ? Φ2 with
? ∈ {+,×}, then for every i ∈ [t], we have tdXi(Φ) ≤ tdXi(Φ1) + tdXi(Φ2). Induction, therefore,
implies

|Φ| ≥ |Φ1|+ |Φ2| = Ω
(∑
i∈[t]

tdXi(Φ1) +
∑
i∈[t]

tdXi(Φ2)
)
≥ Ω

(∑
i∈[t]

tdXi(Φ)
)
.

To conclude the lower bound for determinant, partition X = (xi,j) to X1, . . . , Xn with Xi =
{xi+j−1,j}j∈[n], where the indices are taken modulo n. Using the lemma above, it suffices to show
that

∑
i∈[n] tdXi(DET) = Ω(n3). By symmetry it is sufficient to prove that tdX1(DET) ≥ Ω(n2).

To see this, observe that determinant contains all monomials of the form xi,jxj,i ·
∏
`6∈{i,j} x`,` with

i 6= j in [n]. Thinking of xi,jxj,i as the coefficient of the monomial
∏
`6∈{i,j} x`,` in the variables X1,

we have that tdX1(DET) is at least the transcendental degree of {xi,jxj,i}i 6=j , which is Ω(n2). As
a concluding remark, we note that for any partition of the matrix X to sets X1, . . . , Xt we have∑

i∈[t] tdXi(DET) ≤ n4.

Proving better lower bounds for arithmetic formulas is a great challenge.

Open Problem 8. Prove a super-polynomial lower bound on the size of arithmetic formulas.

3.3 Monotone Circuits

Monotone arithmetic circuits are circuits over order fields, such as Q and R, that use only positive
numbers as coefficients. Intuitively, such circuits compute polynomials in a “straightforward” way,
as there are no cancelations during the computation. This simple model of computation has been
studied in many works, and exponential lower bounds for the size of monotone circuits are well known
(this is true for the arithmetic case as well as for the Boolean case). Jerrum and Snir [JS80] proved

27

the following lower bound (see also Refs. [SS77, TT94]). We present a simpler but less accurate
analysis that is based on the structural understanding given in Section 2.

Theorem 3.5 ([JS80]). Every monotone circuit computing the permanent of an n × n matrix has
size 2Ω(n).

Sketch. Let Φ be a monotone circuit computing PERM(X), where X is an n× n matrix. Induction
on the size of Φ, as in Theorem 2.6 above, implies that the permanent can be decomposed as
PERM(X) =

∑s
i=1 gihi, where s = O(|Φ|), all the coefficients in gi and hi are non-negative, the

degree of each gi is between n/3 and 2n/3 and deg(gi) + deg(hi) = n (we do not assume anything
on the complexity of gi and hi). Since Φ is monotone, every monomial that occurs in gihi occurs in
the permanent as well.

Fix some g = gi and h = hi as above. Let Rg be the rows i in X so that a variable from row i
occurs in g, and similarly define Rh. Let Cg be the columns j in X so that a variable from column
j occurs in g, and similarly define Ch. Monotonicity implies that Rg ∩Rh = ∅ and Cg ∩ Ch = ∅. In
addition, it implies |Rg| = |Cg| and |Rh| = |Ch| (as otherwise, gh will contain a monomial that does
not belong to the permanent). As deg(gh) = n it follows that the size of Rg is the degree of g and
the size of Rh is the degree of h. The properties above imply that the number of monomials in gh is
at most (|Rg|)!(|Rh|)! ≤ (2n/3)!(n/3)!. Since the number of monomials that occur in permanent is
n!, the size of Φ is at least Ω

((
n
n/3

))
= 2Ω(n).

A different method for proving lower bounds that are tight for monotone circuits was recently
presented in Ref. [RY08b] (the above lower bound for permanent is not tight; the smallest known
monotone circuit for permanent is of size 2O(n logn)). The idea behind the proof is to first decompose
the polynomial in question in a similar way to the proof above, i.e., to represent it as a sum of a
product of polynomials, and then to use results from additive combinatorics to conclude the lower
bound.

Valiant showed that even one “negation” gate is exponentially powerful [Val80], that is, there
exists a polynomial f that has a polynomial size circuit with only one “minus” gate, but every
monotone circuit for f has exponential size. We note that given an arithmetic circuit, we can
efficiently transform it to a circuit with just one “minus” gate (similarly to the first step in the
elimination of division gates, see Theorem 2.11). Recently, it was shown that even for constant
degree polynomials one “minus” gate gives additional power [HY09c], although their arguments only
apply to formulas.

Open Problem 9. Prove a separation between general and monotone circuits for polynomials of
constant degree.

3.4 Noncommutative Computation

In the previous section we considered a restricted model of computation. The restriction was a
“physical” one, a restriction on the coefficients used in the circuit. Here we consider a different type
of restriction, a restriction on the way of “interpreting” the circuit. Given an arithmetic circuit Φ, we
can interpret the polynomial computed by Φ in the “usual” way, or we can interpret the polynomial

28

computed by Φ in a noncommutative way. Namely, we can think of the variables as living in a
noncommutative world, so that the circuit may not “assume” that xy = yx for variables x, y. For
example, from a commutative point of view (x+y)× (x−y) = x2−y2, whereas the noncommutative
way gives (x + y) × (x − y) = x2 + yx − xy + y2. Hence, since we have less possible ways to create
cancelations, it is more difficult to compute a given polynomial in the noncommutative model than in
the commutative model. This makes the task of proving lower bounds for noncommutative circuits
easier than for commutative circuits. Indeed, in terms of proving lower bounds, more is known about
the noncommutative world than the commutative one.

We start by discussing Nisan’s noncommutative formula-size lower bound [Nis91].

Theorem 3.6 ([Nis91]). There exists an explicit noncommutative polynomial f of polynomial degree
that can be computed by a noncommutative circuit of linear size, but every noncommutative formula
for f has exponential size. In addition, viewed as a commutative polynomial, f can be computed by
a polynomial size commutative formula.

This exponential lower bound yields an exponential separation between noncommutative circuit-
size and formula-size. This is in contrast to the commutative world, where every circuit having
a polynomial size and degree can be simulated by a quasi-polynomial size formula (an immediate
corollary of Theorem 2.7). Another interesting point is that the polynomial f given in Theorem 3.6,
viewed as a commutative polynomial, has a polynomial size commutative formula, and hence non-
commutative formulas are exponentially weaker than commutative ones. Nisan also proved similar
exponential lower bounds on the formula-size of the noncommutative permanent and determinant.

Chien and Sinclair strengthened Nisan’s result in the following way [CS07]. Nisan proved that,
say, determinant cannot be computed by small noncommutative formulas as a formal polynomial.
This does not rule out the possibility that over some other noncommutative domains, that are more
structured than the free noncommutative algebra, it is possible to compute the determinant by a
small formula. Chien and Sinclair proved that even when the computation is over 2×2 real matrices,
which form the “most structured non-trivial noncommutative domain,” there are no small formulas
for determinant.

We now sketch the proof of Theorem 3.6.

Sketch. To understand noncommutative formulas, Nisan defined the notion of an arithmetic branch-
ing programs (ABP).

Definition 3.1 (ABP). An ABP is a layered graph with d + 1 layers as follows. The layers are
labelled by 0, 1, . . . , d. The edges of the graph go from layer i to layer i + 1. Every edge e is
labelled by a homogeneous linear form `e =

∑
j∈[n] ce,jxj. Layer 0 has only one vertex called the

source, and layer d has only one vertex called the sink. For every directed path from the source
to the sink γ = (e1, e2, . . . , ed), define the polynomial associated to γ, denoted f [γ], as follows:
f [γ] = `e1`e2 · · · `ed. The polynomial computed by an ABP is

∑
γ f [γ].

The first step in the proof is to simulate noncommutative formulas by ABPs. This is done in two
stages. In the first stage we construct by induction a “messy” ABP as follows. We define ABP(Φ) to
be the ABP corresponding to the formula Φ by induction. When Φ is an input gate, it is clear how to
define ABP(Φ). To construct ABP(Φ1×Φ2) we connect ABP(Φ1) and ABP(Φ2) sequentially, and to

29

construct ABP(Φ1 +Φ2) we connect ABP(Φ1) and ABP(Φ2) in a parallel way. In the second stage we
transform the “messy” ABP to an ABP as follows. Split every vertex v to r vertices (v, 1), . . . , (v, r),
where r is the degree of the polynomial computed by Φ. Put all vertices of the form (v, i) in layer
i. Wire the edges so that (v, i) computes the homogeneous part of degree i of v (here the wiring is
slightly more elaborate than in Theorem 2.2). The second stage may cause an increase in size by a
factor of O(r).

The second step in the proof is to find a “weakness” of noncommutative ABPs. To do so, Nisan
used the so-called partial derivative matrix. Given a homogeneous noncommutative polynomial
f of degree r in x1, . . . , xn and k ∈ {0, 1, . . . , r}, define Mk(f) as the nk by nr−k matrix whose
((i1, . . . , ik), (j1, . . . , jr−k)) entry is the coefficient of the monomial xi1 · · ·xikxj1 · · ·xjr−k in f . Note
that due to non-commutativity, every noncommutative monomial of degree r can be uniquely de-
composed to a product of two monomials of degrees k and r−k. The “weakness” of noncommutative
ABPs is that if the kth layer in a noncommutative ABP has t vertices, then the polynomial f com-
puted by the ABP admits rank(Mk(f)) ≤ t. Indeed, denote by h1, . . . , ht the polynomials computed
by the vertices in layer k, thinking of these vertices as sinks. Denote by g1, . . . , gt the polynomials
computed by the sink when the sources are the t vertices in layer k, respectively. Thus, f =

∑t
i=1 higi

and so Mk(f) =
∑t

i=1Mk(higi). It is not hard to see that each of the matrices Mk(higi) has rank
one, and hence rank(Mk(f)) ≤ t.

Therefore, if a polynomial f of degree 2r admits rank(Mr(f)) ≥ R, then every noncommutative
ABP for f has size at leastR, and so every noncommutative formula for f is large as well. We now give
an example of a degree 2n polynomial with R = 2n. Let x0

1, x
1
1, x

0
2, x

1
2, . . . , x

0
n, x

1
n be 2n variables. For

every a = (a1, . . . , an) ∈ {0, 1}n, define the degree 2n monomial ma = xann x
an−1

n−1 · · ·x
a1
1 x

a1
1 x

a2
2 · · ·xann .

Set f =
∑

ama. Thus, Mn(f) is a permutation matrix of size 2n × 2n and so its rank is 2n. By the
discussion above, f requires exponentially large noncommutative formulas. Note, however, that f
can be computed by a linear size noncommutative circuit (of linear depth, of course); define f0 = 1
and fi = x0

i fi−1x
0
i + x1

i fi−1x
1
i for i ∈ [n]. It is clear that f = fn has a small circuit.

Albeit this understanding of noncommutative formulas, we do not know any lower bound for
noncommutative circuits, that is better than the lower bound for commutative circuits that we
already know. In Section 3.8.5 we present an approach of Hrubeš et al. [HWY10a] for proving lower
bounds for noncommutative circuits.

Open Problem 10. Prove a super-polynomial lower bound on the size of noncommutative circuits.

We remark that the fact that rank(Mk(f)) ≤ t (in the notations of the proof) will play an
important role in Section 4.5 where we discuss deterministic algorithms for polynomial identity testing
of noncommutative formulas.

3.5 Constant Depth Circuits

We now address a second family of restricted circuits, constant depth circuits (recall that for constant
depth circuits the fan-in is unbounded). One of the main motivations for studying restricted families
of circuits is to gain a better understanding of the general model. In Boolean circuit complexity,
the model of bounded depth circuits has received a lot of attention and exponential lower bounds

30

(that deteriorate as the depth increases) were proved for it [H̊as86], but no lower bounds for general
Boolean circuits were derived from those results. In particular, currently we do not know how
to translate a constant depth lower bound of the form exp(n), for any Boolean function f , to
anything more than a proof that f cannot be computed by linear size and logarithmic depth Boolean
circuits (see e.g. the recent Survey [Vio09]). However, in sharp contrast to the Boolean case, if
we could prove an exp(n) lower bound for any n-variate multilinear polynomial for even depth
4 arithmetic circuits then this immediately implies an exp(n) lower bound for general arithmetic
circuits [AV08, Raz08, Koi10]. Thus, understanding shallow arithmetic circuits is almost as difficult
and important task as understanding general circuits. This fact gives a very strong motivation for
studying small depth circuits.

We start this section with a brief survey of known lower bounds for the size of constant depth
circuits. We then consider depth-3 circuit, the “first depth that we do not understand.” Finally, we
discuss circuits of arbitrary constant depth.

The simplest type of constant depth circuits are depth-2 circuits. Such circuits compute either
a sum of monomials or a product of linear functions. This means that the size of a depth-2 circuit
computing an irreducible f is just the number of monomials in f .

Our understanding of (even) depth-3 circuits is far from complete. Recall that depth-3 ΣΠΣ
circuits compute a sum of products of linear forms (there is also the less interesting case of ΠΣΠ
circuits, that are “closer” to depth-2 circuits, which we do not discuss here). Over finite fields,
Grigoriev and Karpinski [GK98] and Grigoriev and Razborov [GR00] proved exponential lower bound
on the size of ΣΠΣ circuits. In fact, their lower bound holds for any circuit computing the function
MODq (where q is a prime number different than the characteristic of the field), which is stronger
than a lower bound for computing some specific polynomial-representation of the function (recall
that the MODq function is defined as MODq(x1, . . . , xn) = 1 iff

∑
i xi = 0 mod q, thinking of xi as

an integer).

Theorem 3.7 ([GK98, GR00]). Let p 6= q be two primes. Then, every ΣΠΣ circuit computing the
n-variate MODq function over Fp must be of size at least 2Ω(n).

Sketch. Let Φ be a ΣΠΣ circuit over the field with p elements Fp. The idea is to partition the product
gates of Φ into two sets, and to find the weakness of each of these sets. We partition the gates of
Φ according to their rank : Every product gate v in Φ of degree dv multiplies dv linear functions.
Define the rank of v as the dimension of the span of these dv linear functions. Partition the product
gates of Φ into VHIGH and VLOW , where VHIGH is the set of product gates of rank at least R (we
shall choose R = εn for a constant ε > 0 that depends on p and q), and VLOW contains the rest of
the gates.

We now describe the weakness of ΣΠΣ circuits (over finite fields). If we substitute random field
elements as inputs, each gate in VHIGH is nonzero with probability at most (1− 1/p)R = 2−cpR. On
the other hand, each product gate in VLOW can be represented by a low degree polynomial, namely,
a polynomial of degree at most pR. The union bound hence implies that a ΣΠΣ circuit Φ of size s
can be well approximated by a low degree polynomial. More accurately, there exists a polynomial
g ∈ Fp[x1, . . . , xn] of degree at most pR so that

Pr
a

[Φ(a) 6= g(a)] ≤ 2−cpRs,

31

where a is uniform in Fnp .

Smolensky [Smo87] proved that the MODq function cannot be well approximated by low degree
polynomials over the Boolean cube. Intuitively, this property of the MODq function should complete
our proof. However, Smolensky’s result holds over the Boolean cube, and does not imply the needed
property over Fp. To overcome this, Grigoriev and Razborov use the observation that the uniform
distribution over Fnp is a convex combination of distributions that are uniform over translates of Fn2
in Fnp . The proof now immediately follows.

Over large fields, however, the best lower bound known on the size of ΣΠΣ circuits is quadratic
[SW01, Shp02]. In fact, over infinite fields no super-linear lower bound on the number of product
gates in depth-3 circuits is known. We shall now give a proof of a nearly quadratic lower bound for
depth 3 circuits computing the determinant.

Theorem 3.8 ([SW01]). Every ΣΠΣ circuit computing the determinant of an n×n matrix must be
of size at least Ω(n4/ log n).

Sketch. The proof combines two common methods in lower bounds proofs. We eliminate gates of
high degree by restricting our inputs to some affine space (thus making certain linear functions
vanish). Then, we claim that the space of partial derivatives of the remaining circuit is of somewhat
low rank whereas that of the determinant has high rank. For the latter property we shall rely on the
fact that determinant is downward-self-reducible in a strong sense.

Let us start with some notation. Recall that for a polynomial f ∈ F[x1, . . . , xn], we denote with
∂xi(f) the partial derivative of f with respect to xi. We also define ∂{x1,x2}(f) as ∂x1(∂x2(f)) =
∂x2(∂x1(f)). Notice that the order does not matter. For any S ⊆ [n], we can similarly define ∂S(f).
Finally, for an integer k, we denote by ∂(f ; k) the vector space over F spanned by all polynomials of
the form ∂S(f), where S is a sized k set.

We shall use the following two simple claims.

Claim 3.1. For every product gate v of degree r in a ΣΠΣ circuit, the dimension of ∂(fv; k) is at
most

(
r
k

)
, where fv is the polynomial that v computes.

Proof. Assume fv =
∏r
i=1 `i, where each `i is a linear form. The space ∂(fv; k) is spanned by the set

{
∏
i∈T `i : T ⊆ [r], |T | = r − k}, whose size is at most

(
r
k

)
.

Claim 3.2. For every k, the dimension of ∂(DETn; k) is at least
(
n
k

)2
, where DETn is the determi-

nant of an n× n matrix X = (xi,j).

Proof. For every two sets R = {r1 < r2 < · · · < rk} and C = {c1 < c2 < · · · < ck} of [n], let
S(R,C) = {xr1,c1 , . . . , xrk,ck}. The polynomial ∂S(R,C)(DETn) is the determinant of the n−k×n−k
matrix that is obtained by deleting the rows indexed by R and columns indexed by C (these are all
monomials that “contain” the monomial xr1,c1xr2,c2 · · ·xrk,ck). The set of all such ∂S(R,C)(DETn) is

linearly independent over F. The number of such pairs (R,C) is
(
n
k

)2
.

The two claims above tell us that if all product gates in a ΣΠΣ circuit Φ computing DETn are
of degree at most D, then the size of Φ is at least

(
n
k

)2
/
(
D
k

)
for every k. Choosing k = n2/(D · e),

32

Stirling’s approximation tells us that the size of such a Φ is at least Ω(en
2/(D·e)). Thus, if D is linear

in n then we get an exponential lower bound. However, in general this does not have to be the case
and so our argument is based on the following case analysis. If there are “many” gates of “high”
degree then clearly the circuit has many wires. I.e. a lower bound immediately follows. On the other
hand if the circuit has a few gates of high degree then by restricting the inputs to a subspace we
can eliminate all gates and still get a circuit computing the determinant of a slightly smaller matrix.
We now explain the details behind this argument: So far we established that when all product gates
are of small degree, the circuit must be large. In particular, if all the product gates containing
the variable x1,n are of degree at most D, then the size of Φ is at least Ω(e(n−1)2/(D·e)). Indeed,
consider the circuit Ψ = Φ|x1,n=1−Φ|x1,n=0 where we eliminate all product gates not containing x1,n

in Φ and only maintain the gates of Φ containing x1,n (each such gate will “appear” twice in Ψ).
Clearly Ψ computes DETn−1 and all its gates are of degree at most D. Hence a lower bound on
the size of Ψ and hence on the size of Φ follows. Clearly, the same reasoning works if we consider
x1,n−1, x1,n−2, . . . , x1,1 and not just x1,n.

If this is not the case, i.e. there is a gate v1,n of degree at least D that contains x1,n, then there
is a linear function `1 so that the restriction of the polynomial Φv1,n to the subspace x1,n = `1 is
zero, i.e., Φv1,n |x1,n=`1 = 0. Applying this restriction, we can eliminate at least D wires from Φ. We
repeat this line of argument sequentially for x1,n−1, x1,n−2, . . . , x1,2. If at some point we find that
all gates containing x1,i (after the substitutions made to x1,n, . . . , x1,i+1) are of degree D then we
proceed as in our former argument. Otherwise we find an appropriate substitution to x1,i. At the

end of the process we get that either there are at least Ω(en
2/(De)) gates in Φ or that we eliminated

(n − 1)D wires. In the latter case we set x1,1 = 1 and xi,1 = 0 for all i ∈ {2, . . . , n}. This gives a
circuit computing DETn−1. To conclude, if we denote by ΣΠΣ(DETn) the size of the smallest ΣΠΣ
circuit computing the determinant of an n× n matrix, then for every D,

ΣΠΣ(detn) ≥ max
(

Ω(e(n−1)2/(D·e)),ΣΠΣ(detn−1) + (n− 1)D
)
.

Choosing D = n2/(4e log n), the theorem follows by induction.

Open Problem 11. Prove super-polynomial lower bounds on the size of ΣΠΣ circuits over infinite
fields.

For depths higher than three weaker lower bounds are known. Raz [Raz08] and Shoup and
Smolensky [SS91] proved a lower bound of (roughly) n1+1/d on the size of depth-d circuits over
arbitrary fields. The main difference between [SS91] and [Raz08] is that [SS91] proved2 the lower
bound for a polynomial of degree n, whereas Raz [Raz08] proved the lower bound for a polynomial of
constant degree, O(d). This difference is particularly interesting when we are dealing with constant
depth circuits, since without loss of generality we can assume that the best arithmetic circuit for a
constant degree polynomial is of constant depth. Hence, if the lower bound of Raz [Raz08] was a
sufficiently large polynomial rather than just super-linear, then it would hold for general, arbitrary
depth, circuits as well. We now discuss Raz’s lower bound [Raz08].

Theorem 3.9 ([Raz08]). For every d ∈ N, there exists a polynomial f with zero-one coefficients of

2In fact, this can be deduced using the techniques of Shoup and Smolensky [SS91], but it was not stated nor proved
there.

33

degree at most O(d) in O(nd) variables so that every depth-d circuit computing f is of size at least
n1+Ω(1/d).

Raz’s proof uses the language of Elusive Functions. To simplify the presentation, we prove the
theorem without using elusive functions (for more details about Elusive Functions see Section 3.8.3).
The argument that we give is close in spirit to the proof of Shoup and Smolensky [SS91].

Sketch. We shall use the following complexity measure. Let G be a field extension of F (e.g., G =
F(Y), the field of rational functions over a new set of variables Y). Let F = {fa : a ∈ [n]} be a
family of homogeneous degree one polynomials in the variables X = {xb : b ∈ [n]} over G. Think
of each fa as a vector of coefficients: for a variable xb, denote by f [a, b] the coefficient of xb in fa.
Define Dm(F) as the span over F of all expressions of the form

∏
(a,b)∈S f [a, b], where S is a subset

of [n]× [n] of size m. As G is an extension field of F, this vector space is not trivial. We are mainly
interested in the dimension of Dm(F) as a vector space over F.

The following claim is the basic observation behind the lower bound. A variant of this lemma
appeared in Ref. [SS91].

Lemma 3.3. Let F be a family of homogeneous degree one polynomials that can be computed by a

depth-d circuit Φ of size s over G. Then the dimension of Dm(F) is at most
(
s+m
m

)d
.

Proof. As every polynomial in F is linear and homogeneous, we can assume without loss of generality
that every gate in Φ computes a homogeneous degree one polynomial. We can transform Φ to such a
form, without increasing the size and depth, by keeping only the “linear homogeneous part” of every
gate (here we allow gates to compute arbitrary linear combinations of their inputs).

Denote by Ti the set of elements of G that label edges that enter gates of depth i − 1 in Φ. By
the assumed structure of Φ, every coefficient in f [a, b] is a sum of products of the form

∏
i∈[d] ti with

ti ∈ Ti ∪ {1}. Thus Dm(F) is contained in the span over F of all expressions of the form

(t1,1t1,2 · · · t1,m)(t2,1t2,2 · · · t2,m) · · · (td,1td,2 · · · td,m)

with every ti,j ∈ Ti∪{1}. By a rough estimate, the number of such expressions is at most
(
s+m
m

)d
.

To prove a lower bound, it thus suffices to find a family F so that the dimension of Dm(F) is
large. Raz defined such a family as follows. Assume that n is prime, and consider the field of rational
functions G = F(Y) with Y = {yi,j : i ∈ [5d], j ∈ [n]} and the variables X = {xi : i ∈ [n]}. For every
a, b ∈ [n], define f [a, b] ∈ G as

f [a, b] =
∏
i∈[5d]

yi,ai+b,

where ai+ b is taken modulo n. This defines a family F of n homogeneous degree one polynomials
in the variables X over G. An important point in the argument is that we can also think of F as a
family of polynomials over the field F in the variables X,Y (so the “final” family of polynomials is in
F[X,Y]). Note that since the output polynomials are homogeneous linear forms in the X variables,
we can still assume that each gate in the circuit computes a homogeneous linear form in X and
therefore the argument remains the same.

Claim 3.3. The dimension of Dm(F), with F defined above, for m = bn1−1/(2d)c, is at least 1
2

(
n2

m

)
.

34

Proof. For every set S ⊂ [n] × [n] of size m, define f [S] =
∏

(a,b)∈S f [a, b]. Notice that f [S] is a
monomial in the Y variables. It thus suffices to show that the number of different Y monomials in
the set {f [S] : S ⊂ [n]× [n], |S| = m} is at least one half of the total number of such sets S.

We say that a set S is unique if for every (a, b) 6∈ S, one of the variables in {yi,ai+b : i ∈ [5d]}
does not appear in f [S]. The term “unique” originates from the following property. If S is unique
and f [S′] = f [S], then every (a, b) not in S is also not contained in S′, and therefore S = S′.

We now claim that at least half of the sets S ⊂ [n]× [n] of size m are unique. This will complete
the proof of the claim. To see that this holds, let us choose S uniformly at random and prove that S
is unique with probability at least one half. For every (a, b) ∈ [n]× [n] and i ∈ [5d], denote by La,b,i
the “line” {(a′, b′) ∈ [n]× [n] : i(a− a′) + (b− b′) = 0 mod n}. For every (a, b), the following events
are equal{

one of the variables {yi,ai+b : i ∈ [5d]} does not appear in f [S]
}

≡
{

there exists i ∈ [5d] so that S ∩ La,b,i = ∅
}
.

Denote by Ea,b,i the event {S ∩ La,b,i 6= ∅}. The size of La,b,i \ {(a, b)} is n − 1 and the size of
[n]× [n] \ {(a, b)} is n2− 1. As for i 6= i′ in [5d], the two lines La,b,i, La,b,i′ intersect only at the point
(a, b), for every a, b, i, we have

Pr[Ea,b,i|Ea,b,1, . . . , Ea,b,i−1, (a, b) 6∈ S] ≤ Pr[Ea,b,i|(a, b) 6∈ S] ≤ |S|(n− 1)/(n2 − 1),

which implies

Pr
[⋂
i∈[5d]

Ea,b,i
∣∣∣(a, b) 6∈ S] ≤ (|S|(n− 1)/(n2 − 1)

)5d ≤ n−5d/(2d) ≤ n−2/2.

Applying the union bound again, the probability that S in not unique is at most n2n−2/2 = 1/2.

Lemma 3.3 with m = bn1−1/(2d)c and Claim 3.3 imply that if a depth-d circuit of size s computes

F then
(
n2

m

)
/2 ≤

(
s+m
m

)d
, which implies s ≥ n1+Ω(1/d). It just remains to conclude the same lower

bound for a single polynomial rather than a family of n polynomials. Theorem 2.5 tells us that the
constant depth circuit-size of F is equivalent to that of

f =
∑
a∈[n]

zafa,

where F = {fa : a ∈ [n]}, and Z = {za : a ∈ [n]} is a new set of variables. This completes the proof
(to conclude the theorem for all integers n, we can use the density of prime numbers). We remark
that the “final” polynomial for which the lower bounds is proved, is a polynomial in the n+ 5nd+n
variables X,Y, Z over F. As explained above, this does not change the conclusion.

To conclude our discussion of constant depth circuits, we consider a special type of ΣΠΣ circuits
which we suggest as a step towards solving Problem 11.

Denote σk,m =
∑

S⊂[m]:|S|=k
∏
i∈S xi, the k’th symmetric polynomial in m variables. Ben-Or

gave a ΣΠΣ circuit of size O(n2) that, simultaneously, computes σ0,n, . . . , σn,n (see Ref. [SW01]).

35

Here is a rough description of this circuit: evaluate the polynomial f(z) = (z + x1)(z + x2) · · · (z +
xn) =

∑n
i=0 z

n−iσi at n + 1 different points, and recover the coefficient of zn−i, which is σi, using
interpolation. This construction works as long as the field is large enough, namely, contains at
least n+ 1 points so that interpolation is possible. In contrast, in the Boolean world we know that
computing the symmetric polynomials requires exponentially large constant depth circuits. This is
another evidence of the difference between the finite field case and the infinite field case.

In [Shp02] it was shown that for every polynomial f(x1, . . . , xn) of degree r over the field of
complex numbers C, there exists m = m(f) ∈ N so that f = σr,m(y1, . . . , ym), where y1, . . . , ym
are linear functions in x1, . . . , xn. Using Ben-Or’s construction, we conclude that, over C, every
polynomial f has a ΣΠΣ circuit of size roughly (m(f))2. Therefore, proving lower bounds on m(f)
over C is easier than proving lower bound on the size of a ΣΠΣ circuit for f .

Open Problem 12. Prove super-polynomial lower bounds on m(f) over C.

Currently the best lower bound known on m(f) is linear in n [Shp02]. Thus, even the problem
of proving super-linear lower bounds on m(f) is open.

3.6 Multilinear Circuits and Formulas

In the multilinear world our understanding of formulas, for which strong lower bounds are known,
is quite good (but still far from being complete), whereas our understanding of circuits, for which
only weak bounds are known, could be greatly improved. We start by stating the lower bounds
and separations known for multilinear formulas, and explaining the ideas behind the proofs of these
results. We then sketch the proof of the best known lower bound for multilinear circuits, and finally
we discuss lower bounds and separations for constant depth multilinear circuits. The reader is advised
to recall the relevant definitions from Section 2.2.1.

The first super-polynomial lower bounds on the size of multilinear formulas were proved by Raz
[Raz09]. We shall give a sketch of the proof idea below.

Theorem 3.10 ([Raz09]). Every multilinear formula computing either the permanent or the deter-
minant of an n× n matrix must be of size at least nΩ(logn).

Subsequently, Raz showed a super-polynomial separation between multilinear circuit-size and
formula-size [Raz06]. Later, Raz and Yehudayoff [RY08a] gave a simplified proof for this separation.

Theorem 3.11 ([Raz06]). There exists a polynomial f that can be computed by a polynomial size
syntactically multilinear circuit, but every multilinear formula for f must be of super-polynomial size.

As for general circuits (Theorem 2.7 above), syntactically multilinear circuits can be simulated
efficiently by syntactically multilinear circuits of depth log2 n. Theorem 3.11 therefore shows that in
the multilinear world NC1 6= NC2. In addition, by examining the proof of Theorem 3.11 we see that
the “ideas” of Theorem 3.10 are not sufficient for proving super-polynomial lower bounds on the size
of syntactically multilinear circuits (as the lower bound proof is the same as in Theorem 3.10).

The best lower bound known on the size of syntactically multilinear circuits is slightly better
than the one known for general circuits [RSY08].

36

Theorem 3.12 ([RSY08]). There is an explicit polynomial f ∈ VNP with 0/1 coefficients so that
every syntactically multilinear circuit computing f must be of size Ω(n4/3/ log2 n).

As a side remark, we note that one can show that a lower bound of s on the size of syntactically
multilinear circuits automatically implies an Ω(s/n3) lower bound on the size of noncommutative
circuits [HWY10a].

Open Problem 13. Prove a super-polynomial lower bound on the size of multilinear circuits.

We now move on to discussing the ideas required to prove Theorem 3.10. The two main tools
required for proving lower bounds for multilinear formulas are the partial derivative matrix and
random partitions of the variables. These tools were first used in this context by Raz, and they could
be seen as an adaptation/evolvement of similar ideas from the earlier works [Nis91, NW96, H̊as86].
We first give a brief description of these concepts, and then discuss how to combine them to a proof.

The partial derivative matrix was previously discussed in the context of noncommutative com-
putation (see Section 3.4). Here we use it in a slightly different manner. Given a polynomial f in
two sets of variables Y = {y1, . . . , ym} and Z = {z1, . . . , zm}, define M(f) as the 2m by 2m matrix
whose (S, T) entry, S, T ⊆ [m], is the coefficient of the monomial

∏
i∈S yi

∏
j∈T zj in f . The partial

derivative matrix has a few useful and simple properties (for more details see, e.g., Ref. [Raz09]).

Lemma 3.4. Given two polynomials f and g,

1. rank(M(f + g)) ≤ rank(M(f)) + rank(M(g)),

2. rank(M(f · g)) ≤ rank(M(f)) · rank(M(g)) (here we take the multilinear part of f · g), and

3. rank(M(f)) ≤ 2min(Y (f),Z(f)) ≤ 2(Y (f)+Z(f))/2, where Y (f) is the number of Y variables that
occur in f and Z(f) is the number of Z variables that occur in f .

As in the noncommutative world, we think of the rank of this matrix as an “evidence of hardness”
of a given polynomial. However, the situation in the multilinear world is not as simple as in the
noncommutative world. For example, the partial derivative matrix of f = (y1 +z1)(y2 +z2) · · · (ym+
zm) has full rank, but f has a linear size formula. To overcome this difficultly, Raz suggested to
consider the rank with respect to a random partition of the variables to two sets. Specifically, let
X = {x1, . . . , x2m} be a set of variables. A partition A is a one-to-one map from X to Y ∪ Z. In
other words, it is a renaming of the variables X by Y and Z. For a polynomial f in X, define f [A]
as the polynomial in Y,Z that is obtained by substituting every xi by A(xi) in f . For our needs we
will only consider partitions in which |Y | = |Z|. The following theorem is the crux of Raz’s idea and
demonstrates a “weakness” of multilinear formulas.

Theorem 3.13 ([Raz06]). There is a constant ε > 0 so that if a multilinear formula of size nε logn

computes an n-variate polynomial f , then there exists a partition A such that the rank of M(f [A])
is not full.

We say that a polynomial f has full rank if M(f [A]) has full rank for every A. Theorem 3.13
thus tells us that every full rank polynomial requires multilinear formulas of super-polynomial size.
Now, to prove a lower bound for multilinear formulas, we just need to find a full rank polynomial.

37

We address this issue after sketching the proof of the theorem (we present a slightly different proof
than Raz’s).

Sketch. The first step is to decompose f into “building blocks,” which we call log-product polynomi-
als. A polynomial g is log-product if it is a product of t = (log n)/100 polynomials g = g1 · g2 · · · gt so
that the set of variables X can be partitioned into t sets X1, . . . , Xt, each of size at least n1/2, where
every gi is defined over the variable set Xi. Let Φ be a multilinear formula of size s−1 computing f .

Lemma 3.5. Every polynomial f computed by a multilinear formula of size s can be written as a
sum of s+ 1 polynomials f = f1 + . . .+ fs+1, where each fi is a log-product polynomial.

Sketch. Find a gate v in Φ so that n/3 ≤ |Xv| ≤ 2n/3. By induction, Φv is a sum of |Φv| log-product
polynomials in the variables Xv. As Φ is multilinear it holds that f = g · Φv + h, where g is a
polynomial in X \Xv and h is the polynomial computed by Φ after labeling v by zero. The structure
of f now follows by using the induction hypothesis for h.

The second part of the proof is the following probability estimate. Choose A uniformly at random
from the set of all partitions. For every log-product polynomial g = g1 · g2 · · · gt, the probability of
the event E(g) = {rank(M(g[A])) ≥ 2n/2−n

1/16} is at most n−Ω(t) = n−Ω(logn). This probability
estimate, together with the union bound and Item (1) from Lemma 3.4 complete the proof of the
theorem, since

Pr
A

[rank(M(f [A])) = 2n/2] ≤ Pr
A

[E(f1) ∪ E(f2) ∪ · · · ∪ E(fs)] ≤ sn−Ω(logn) ≤ 1/2,

for ε > 0 a small enough constant. To prove this probability estimate, we argue that E = E(g) is
roughly the intersection of Ω(t) independent events, each of which happens with probability at most
order n−3/16. We first write this statement (which completes the proof) formally, and then explain
it in more detail. The formal statement is

Pr[E] ≤ Pr[∀ j ∈ [t] rank(M(gj [A])) ≥ 2|Xj |/2−n
1/16

]

≤ Pr[∀ j ∈ [t]
∣∣|A(Xj) ∩ Y | − |Xj |/2

∣∣ ≤ n1/16]

≤
(
cn1/16|Xj |−1/2

)t ≤ n−Ω(t),

where c > 0 is a constant and X1, . . . , Xt is the partition of X corresponding to the representation of
g as a log-product polynomial. The first inequality holds (from a contra-positive point of view) by

properties (2) and (3) from Lemma 3.4: if there exists j′ ∈ [t] so that rank(M(gj′ [A])) < 2|Xj′ |/2−n
1/16

then
rank(M(g[A])) ≤ 2

∑
j 6=j′ |Xj |/2 · rank(M(gj′ [A])) < 2n/2−n

1/16
.

The second inequality holds by property (3) from Lemma 3.4, as for any two real numbers α, β we
have min(α, β) = (α+β)/2−|α−β|/2. The third inequality holds by the union bound and standard
properties of the hyper-geometric distribution. Finally, the last inequality holds as |Xj | ≥ n1/2.

Raz also showed that both determinant and permanent are full rank polynomials (in some, more
general, sense), thus proving Theorem 3.10. To be able to view permanent and determinant as
full rank polynomials, we define a slightly more general family of partitions. A partition A of an

38

n× n matrix X is a map from X to Y ∪ Z ∪ {0, 1}, where Y = {y1, . . . , ym}, Z = {z1, . . . , zm} and
m = bn1/3c, defined as follows. Let R1 = {r1(1), . . . , r1(m)}, R2 = {r2(1), . . . , r2(m)} be two disjoint
subsets of [n], and let C1 = {c1(1), . . . , c1(m)}, C2 = {c2(1), . . . , c2(m)} be another pair of disjoint
subsets of [n]. These two pairs correspond to subsets of rows and columns of X, respectively. For
every i ∈ [m], A can be defined as(

xr1(i),c1(i) xr1(i),c2(i)

xr2(i),c1(i) xr2(i),c2(i)

)
→A

(
yi zi
1 1

)
or as

(
xr1(i),c1(i) xr1(i),c2(i)

xr2(i),c1(i) xr2(i),c2(i)

)
→A

(
yi 1
zi 1

)
.

Denote {j1 < · · · < jn−2m} = [n] \ (R1 ∪ R2) and {`1 < · · · < `n−2m} = [n] \ (C1 ∪ C2). For every
i ∈ [n − 2m], set A(xji,`i) = 1. For every variable x ∈ X that A is not already defined on, set
A(x) = 0. So, up to a permutation, the matrix X after the substitution A looks like

B1

. . .
Bm

1
. . .

1

 ,

where each Bi is a 2 × 2 matrix such that DET(Bi) = yi − zi. For every A, we have DET[A] =∏
i∈[m](yi−zi), and so the rank of M(DET[A]) is full. It turns out that similar probability estimates

to the ones in the proof of Theorem 3.13 hold when we consider the uniform distribution on such
partitions instead of the uniform distribution on all partitions.

Although we know how to prove lower bounds for multilinear formulas, we still do not understand
well enough their computational power compared to that of general formulas.

Open Problem 14. Are multilinear formulas weaker than general formulas?

We now give a sketch of the proof of Theorem 3.12. In fact we will sketch the proof of the
following theorem. Theorem 3.12 follows by exhibiting a polynomial with 0/1 coefficients that have
the required properties. We shall not give the details of this construction here.

Theorem 3.14 ([RSY08]). Let Ψ be a syntactically multilinear arithmetic circuit over the field G
and the set of variables X = {x1, . . . , xn} computing f . Let Y = {y1, . . . , ym} and Z = {z1, . . . , zm}
be two sets of variables (where n = 2m and m is even). If for all partitions A of X to Y and Z

Rank (M(f [A])) = 2m, then |Ψ| = Ω
(
n4/3

log2 n

)
.

Sketch. The proof combines the ideas of Theorem 3.13 and Theorem 2.5 together with the general
theme of looking for a “special” structure of polynomials computed by small circuits.

The first step of the proof is the following analog of Theorem 2.5. The proof resembles the proof
of Theorem 2.5 and so we leave it to the reader. Note that the lemma actually guarantees the
existence of a syntactic multilinear circuit Ψ′ that has more structure than in the case of general
circuits.

Lemma 3.6. Let Ψ be a syntactically multilinear arithmetic circuit over the field F and the set of
variables X computing f . Then, there exists an arithmetic circuit Ψ′ over the field F and the set of
variables X such that the following hold:

39

1. Ψ′ computes all n partial derivatives ∂x1(f), . . . , ∂xn(f).

2. |Ψ′| = O(|Ψ|).

3. Ψ′ is a syntactically multilinear arithmetic circuit.

4. For every i ∈ [n], if vi is the gate computing ∂xi(f) in Ψ′, then xi 6∈ var(vi), where var(vi) is
the set of variables in the sub-circuit rooted at vi.

Another important ingredient in the proof is the following. Let Φ be a syntactically multilinear
arithmetic circuit over the field F and the variables X = {x1, . . . , xn}. Fix τ = 3 log n. Define L(Φ, τ),
the set of lower leveled gates in Φ, as the set of all gates u in Φ, such that 2τ < |var(u)| < n − 2τ ,
and u has a father u′ such that |var(u′)| ≥ n− 2τ . The next theorem shows that if a circuit does not
have enough lower leveled gates then it computes a (relatively) low rank polynomial.

Theorem 3.15. Let f be a polynomial that is computed by a syntactically multilinear arithmetic
circuit Φ, over the field F and the set of variables X = {x1, . . . , xn}. Let Y = {y1, . . . , ym} and
Z = {z1, . . . , zm} be two sets of variables (where n = 2m and m is even). Let τ = 3 log n, and let
L = L(Φ, τ) be the set of lower leveled gates in Φ. Let c > 0 be a small enough constant (c = 1/1000
suffices). Assume |L| < c

τ n
1/3. Then, there exists a partition A of X to Y and Z such that

rank(M(f [A])) < 2m−1.

At first sight this theorem seems very weak as it only guarantees the existence of (roughly) n1/3

gates in the lower leveled set. The picture becomes clearer when one considers Lemma 3.6 and the
following simple observation.

Observation 3.1. Let A be a partition of X. If Rank(M(f [A])) = 2m. Then, for every xi ∈ X

rank(M(∂xi(f)[A])) = 2m−1.

Our goal will be to show that for every variable xi the set of lower leveled gates in the sub-circuit
computing ∂xi(f) is large and that these sets are “almost” disjoint.

Indeed, let Ψ′ be the arithmetic circuit computing all n partial derivatives of f given by
Lemma 3.6. Let τ = 3 log n, and let L = L(Ψ′, τ) be the set of lower leveled gates in Ψ′. De-
fine U = U(Ψ′, τ), the set of upper leveled gates in Ψ′, to be the set of all gates u ∈ Ψ′ that have a
child in L and that satisfy |var(u)| ≥ n − 2τ . To prove the theorem, we will bound from below the
size of U .

Let i ∈ [n]. Set gi = ∂xif . Let vi be the gate computing gi in Ψ′. Denote by Ψ′i the arithmetic
circuit Ψ′vi . Define Li = L(Ψ′i, τ) to be the set of lower leveled gates in Ψ′i. It is not difficult to see

that Li ⊆ L. In addition, Theorem 3.15 and Observation 3.1 imply that |Li| ≥ c
τ n

1/3. For a gate v
in Ψ′, define Cv = |{i ∈ [n] : v is a gate in Ψ′i}|. For i ∈ [n], define Ui = {u′ ∈ U : u′ is a gate in Ψ′i}.
Thus, for all i ∈ [n], we have Ui ⊆ U . Hence,∑

i∈[n]

|Ui| =
∣∣{(u′, i) : u′ ∈ U and i ∈ [n] are such that u′ is a gate in Ψ′i}

∣∣ =
∑
u′∈U

Cu′ .

40

Let i ∈ [n]. As Li ⊆ L it follows that for every gate u ∈ Li there is a corresponding gate u′ ∈ Ui,
which is a father of u. Thus, since the in-degree of the gates in Ui is 2, we have |Li| ≤ 2|Ui|. Recall
that, for all u′ ∈ U , it holds that |var(u′)| ≥ n−2τ . Property 4 of Lemma 3.6 now implies that every
u′ ∈ U admits Cu′ ≤ n− |var(u′)| ≤ n− (n− 2τ) = 2τ . Combining all of the above we get

c

τ
n4/3 ≤

∑
i∈[n]

|Li| ≤ 2
∑
i∈[n]

|Ui| = 2
∑
u′∈U

Cu′ ≤ 2|U| · 2τ.

In particular, |U| = Ω
(
n4/3

log2 n

)
and the result follows.

Thus, all that is left to do is to prove Theorem 3.15. This is the main technical difficulty of Raz
et al. [RSY08].

Sketch of Proof of Theorem 3.15. The proof is based on a structure theorem and a probability es-
timate. Denote L = {u1, . . . , u`}. Set Yi = Yui and Zi = Zui to be the set of Y variables and Z
variables that appear in the sub-circuit of Φ[A] rooted at ui, respectively. Denote with vf the output
gate of Φ.

Theorem 3.16. For every partition A, f [A] can be expressed as f [A] =
∑

i∈[`] giΦui + g, where
g, g1, . . . , g` ∈ F[Y,Z] are multilinear polynomials such that for all i ∈ [`], the set of variables that
occur in gi and the set Yi ∪Zi are disjoint, g is the polynomial computed by vf after substituting (in
Φ[A]) every u ∈ L by 0 and, furthermore, deg(g) ≤ 4τ .

The proof of the theorem is by induction on the structure of Φ and we leave it to the readers.
Another ingredient required for the proof of Theorem 3.15 is the following probabilistic argument
whose proof is also left to the readers. We say that a gate v is k-unbalanced if ||Yv| − |Zv|| ≥ 2k.

Lemma 3.7. Let Ψ be an arithmetic circuit over the field F in the set of variables X = {x1, . . . , xn}.
Let Y = {y1, . . . , ym} and Z = {z1, . . . , zm} be two sets of variables (where n = 2m and m is
even). Let X1 ⊂ X be a subset of X of size n/4. Let A be a random partition of X to Y and Z,
conditioned on the event A(X1) ⊂ Y . Let β be such that 0 < β < 1, and let v be a gate in Ψ such
that nβ < |Xv| < n− nβ. Then, for any integer k ∈ N,

PrA[v is not k-unbalanced in Ψ[A] | A(X1) ⊂ Y] = O
(
kn−β/2

)
.

We continue with the proof of Theorem 3.15. The first step is to use Lemma 3.7 together with a
“clever” union bound to show that there exists a partition A such that every u ∈ L is τ -unbalanced
in Φ[A]. In the second step, we use Theorem 3.16 to express f [A] as f [A] =

∑
i∈[`] giΦui + g. Since

each u ∈ L is τ -unbalanced, Lemma 3.4 implies that rank(M(giΦui [A])) ≤ 2m−τ . As deg(g) ≤ 4τ
it holds that rank(M(g[A])) ≤ m4τ (this is an upper bound on the number of nonzero rows and
columns in the matrix M(g[A])). Hence, rank(M(f [A])) ≤ |L| · 2m−τ +m4τ < 2m−1, where the last
inequality holds as τ = 3 log n and m = n/2.

This completes the overview of the proof of Theorem 3.14.

For bounded depth multilinear circuits we can prove much stronger lower bounds, similar to those
known for bounded depth Boolean circuits [H̊as86].

41

Theorem 3.17 ([RY09]). Every depth-d multilinear circuits computing either the permanent or the

determinant of an n× n matrix must be of size 2n
Ω(1/d)

.

In fact, for bounded depth multilinear circuits we have a strong separation result.

Theorem 3.18 ([RY09]). For every constant d, there is an n-variate polynomial that is computed
by a polynomial-size polynomial-degree syntactically multilinear circuit of product-depth3 d, but every

multilinear circuit of product-depth d− 1 computing it must be of size at least nΩ(log1/2d(n)).

We now explain the idea behind the proof of Theorem 3.17. The proof of Theorem 3.18 is
more involved and we shall not discuss it here (the lower bound part is similar to the proof of
Theorem 3.17, but the construction requires a detailed discussion). To demonstrate the main idea
we give a high-level description of the proof of the following theorem.

Theorem 3.19 ([RY09]). There is a constant ε > 0 so that if a multilinear product-depth d circuit

of size at most 2n
ε/d

computes an n-variate polynomial f , then there exists a partition A such that
the rank of M(f [A]) is not full. (Here n is large enough compared to d.)

High-level. The main idea behind the proof of the nΩ(logn) lower bound for the size of multilinear
formulas was to express a multilinear formula of size s as a sum of s polynomials, each of which is a
product of t = O(log n) polynomials with at least n1/2 variables each, and then applying a random
partition to the variables. Then, using probability estimates, we obtained a lower bound of the form
nΩ(t). A similar though more elaborate analysis can be performed for constant depth multilinear
circuits as well. In what follows we assume (using Theorem 2.4) that Φ is a syntactic multilinear
formula (making Φ a formula may increase the size by a polynomial factor).

Definition 3.2. A polynomial f over the variables X = {x1, . . . , xn} is called d-weak if for t =
bn1/(2d)c one of the following holds:

1. f = g1 · g2 · · · gt, where for every i 6= j in [k] the two polynomial fi, fj are defined over disjoint
sets of variables, and for every i in [k] the variable-set of fi has size at least t.

2. f = ` · g, where ` is a linear form over at least t variables and the variable-set of g is disjoint
from that of `.

The following lemma is the basic decomposition required for the lower bound proof.

Lemma 3.8. Let d ∈ N and let Φ be a multilinear circuit of product-depth d and size s over n
variables computing h. Then there exist d-weak polynomials h1, . . . , hs+1 so that

h = h1 + h2 + . . .+ hs+1.

High-level. The lemma follows by similar arguments to the proof of Theorem 2.6. The basic obser-
vation is that (as long as Φ contains at least n/2 variables) either

3The product-depth of a gate v is the maximal number of product gates in a directed path reaching v. Depth and
product-depth are equivalent up to a factor of two, for circuits of unbounded fan-in.

42

1. Φ has a product gate v that has at least t children, each computing a polynomial over at least
t variables, or

2. Φ contains a sum gate v that computes a linear function over at least t variables.

This property holds as Φ has product-depth d and is syntactically multilinear. With this property
(as in Theorem 2.6), we can write h as

h = gvhv + h′v,

where hv is the polynomial computed at v, gv is a polynomial whose variable-set is disjoint from that
of hv, and h′v is another polynomial that can be computed by a smaller formula. The lemma now
follows by induction on the size of Φ, as the polynomial gv · hv is d-weak.

As in the proof of Theorem 3.13, we will use random partitions. A one-to-one map from X to
Y,Z with |Y | = |X|/2 is called a partition. In the following A is chosen uniformly at random from
the family of all partitions.

Lemma 3.9. Let h be a d-weak polynomial. Then

Pr
A

[rank(M(h[A])) ≥ 2n/2−t
1/4

] ≤ 2−Ω(t).

Proof. Assume that h can be written as h = g1 · g2 · · · gt as in the definition of d-weak. Similarly to
the proof of Theorem 3.13, the event {rank(M(h[A])) ≥ 2n/2−t

1/4} is roughly the intersection of t
independent events, the probability of which is at most 1/2. Otherwise, h = ` · g, and then for all A,

rank(M(h[A])) ≤ rank(M(`[A])) · rank(M(g[A])) ≤ 2 · 2(n−t)/2.

The two lemmas imply that

Pr
A

[rank(M(f [A])) = 2n/2] ≤
∑

i∈[s+1]

Pr
A

[rank(M(fi[A])) ≥ 2n/2/(s+ 1)] ≤ (s+ 1)2−Ω(t) < 1,

where s ≤ 2n
ε/d

is the size of the circuit for f and f1, . . . , fs+1 are d-weak polynomials (assuming
ε > 0 is small enough).

In conclusion, we see that strong lower bounds are known for multilinear formulas and for bounded
depth multilinear circuits. However, many open problems still remain, most significantly proving su-
per polynomial lower bounds for general multilinear circuits (or even just for syntactically multilinear
circuits).

43

3.7 Circuits with Bounded Coefficients

When computing a polynomial (over, say, the complex numbers) whose coefficients have bounded
absolute value, say, at most 1, it is not clear whether the use of large constants can help the com-
putation. In particular it seems unnatural to use large coefficients in order to compute a polynomial
that have, say, 0/1 coefficients. This motivates the study of circuits with bounded coefficients. A
circuit with bounded coefficients is a circuit in which the input gates are labelled by variables and
not by field elements, and the edges are labelled by field elements with absolute value at most 1
(any other bound c ≥ 1 on the absolute value can be translated to 1 by a simple reduction). The
computation is performed as before with the notable difference that every edge is multiplied by the
constant labeling it. Such circuits were suggested by Morgenstern [Mor73], and were later studied by
Chazelle [Cha98] and Raz [Raz03] as well. Morgenstern proved the following lower bound [Mor73].

Theorem 3.20 ([Mor73]). Every circuit with bounded coefficients computing the discrete Fourier
transform of x̄ = (x1, . . . , xn) must be of size Ω(n log n).

This lower bound is tight, as there is a circuit with bounded coefficients of size O(n log n) com-
puting the Fourier transform [CT65] (at least when n is a power of two).

Sketch. For simplicity, we shall consider computation over R. Consider a circuit Φ computing n
linear forms 〈ᾱ1, x̄〉 , . . . , 〈ᾱn, x̄〉 in the variables x̄, where 〈·, ·〉 denotes the usual inner product in Rn
(note that DFT has exactly this form). Since these are homogeneous linear forms, we can assume
without loss of generality that Φ is a linear circuit, that is, all computations done in Φ are of the
form Φv = a1Φv1 + a2Φv2 , with a1, a2 ∈ R. As we consider the bounded coefficients model we have
that |a1|, |a2| ≤ 1. For every gate v in Φ, we can thus associate a vector β̄v in Rn so that v computes〈
β̄v, x̄

〉
. The main idea behind the proof is to consider the volume of the polytope defined by the

linear functions computed at the gates of the circuit. Let ᾱ1, . . . , ᾱn be n vectors in Rn. The volume
of these n vectors is the absolute value of the determinant of the n × n matrix whose rows are
ᾱ1, . . . , ᾱn. We now define a progress measure that does not increase fast for circuits with bounded
coefficients. For a linear circuit Ψ, denote by volume(Ψ) the maximum volume of β̄v1 , . . . , β̄vn , over
all choices of n gates v1, . . . , vn in Ψ. Since the coefficients in Φ are bounded in absolute value by
1, a sum gate can increase the volume, of the circuits computed by its children, by at most a factor
of two. Indeed, it follows by a simple induction that the volume of a size s circuit, with coefficients
bounded by 1, is at most 2s. Since the volume of the n vectors defining the Fourier transform is
nn/2, any circuit with bounded coefficients computing it has size at least Ω(n log n).

Generalizing Morgenstern’s ideas, Raz proved the following lower bound [Raz03].

Theorem 3.21 ([Raz03]). Every circuit with bounded coefficients computing the product of two n×n
matrices must be of size Ω(n2 log n).

Note that these two lower bounds hold for polynomials of constant degree. In contrast, no super-
linear lower bound is known on the size of general circuits computing constant degree polynomials
(recall Open Problem 7).

44

3.8 Approaches for Proving Lower Bounds

In this section we shortly discuss several general approaches for proving lower bounds. We shall not
give the most general treatment of each of these approaches but rather give the main ideas, mostly
by considering some specific examples.

3.8.1 Rigidity

The notion of rigidity was introduced by Valiant [Val77] for the purpose of proving size-depth trade-
offs, namely, showing that a circuit of depth O(log n) and linear size cannot compute some polynomial
f . We will demonstrate this method for the task of computing a linear transformation, although it
is more general and can take different forms in different contexts.

We say that a matrix M is (S,R)-rigid if by changing at most S entries in every row of M one
cannot decrease its rank below R. The integer S is called the sparsity parameter and R the rank
parameter.

Theorem 3.22 ([Val77]). If an n× n matrix M is (S,R)-rigid with S = n1/10 and R ≥ n/100 then
any circuit computing Mx, for x = (x1, . . . , xn), cannot be of (simultaneously) depth O(log n) and
size O(n).

Sketch. Assume towards a contradiction that there exists a circuit Φ of depth O(log n) and size
s = O(n) computing Mx. We can assume without loss of generality that every gate in Φ computes
a homogeneous linear form (at the cost of a constant blowup in size).

Valiant’s idea is to show that there exists a set V of gates in Φ of size |V | = o(s), so that after
deleting all the edges connected to V , the circuit becomes of depth at most (log n)/10. This is a
combinatorial claim on graphs of logarithmic depth and has nothing to do with the function being
computed by the circuit. We leave the proof of this claim to the reader.

With this observation in mind, one can argue that M has a “special” structure. Denote by Fi
the linear form defined by the i’th row of M . Now, if we delete V from Φ, then we are left with a
circuit of depth at most (log n)/10, and therefore each output gate originally computing some Fi is
now connected to at most n1/10 input gates. We can thus express each Fi as a linear combination
of the linear forms {Φv}v∈V and of at most n1/10 input variables. In other words, the matrix M can
be written as a sum of a matrix of rank at most o(s) = o(n) (whose rows are spanned by {Φv}v∈V)
and a sparse matrix having at most n1/10 nonzero entries in every row. This is a contradiction, as
M is rigid.

To prove a size-depth tradeoff, it thus suffices to find an explicit rigid matrix, a matrix that
cannot be expressed as a sum of a low rank matrix and a sparse matrix. Counting arguments imply
that most matrices are in fact rigid. However, and as usual, we do not know of any explicit rigid
matrix. It seems that the main difficulty in finding a rigid matrix comes from the fact that we need
to argue about two different structures at the same time: low rank matrices and sparse matrices.
We have a good understanding of each of these families, but we do not understand how to jointly
analyze them. For some recent result on rigidity see Ref. [Dvi10].

45

3.8.2 Tensor Rank

The tensor rank approach is quite general as well. Here we give two examples of its possible ap-
plicability: a circuit-size lower bound and a formula-size lower bound. We start by defining some
notions related to tensors. A three-dimensional tensor T is a map T : [n]3 → F. A tensor is a
higher dimensional version of a matrix: an n × n matrix M is simply a map M : [n]2 → F. A
rank one tensor is a tensor T so that T (i1, i2, i3) = t1(i1)t2(i2)t3(i3), where t1, t2 and t3 are maps
from [n] to F. This coincides with the definition of rank one matrices: a matrix M has rank one
if M(i1, i2) = m1(i1)m2(i2). The rank of a tensor T is the minimal R ∈ N so that T =

∑R
j=1 Tj

with every Tj being a rank one tensor. Tensor rank is a generalization of matrix rank, and it is not
difficult to see that, e.g., the rank of a three-dimensional tensor is at most n2. As the next theorem
shows, tensor rank is an important measure that is closely related to the circuit complexity of the
underlying tensor.

Theorem 3.23 ([Str73b]). Let T be a three-dimensional tensor of tensor rank at least R. Then the
polynomial F (x, y, z) =

∑
i,j,k∈[n] T (i, j, k)xiyjzk requires circuits of size at least Ω(R), over R.

Sketch. Let Ti be the matrix defined by Ti(j, k) = T (i, j, k). Consider a circuit Φ computing the
n bilinear forms F1, . . . , Fn defined by T1, . . . , Tn, respectively. Namely, Fi =

∑
j,k Ti(j, k)yjzk. By

Theorem 2.5, the circuit complexity of F1, . . . , Fn is the same as that of F , up to constant factors.
By possibly increasing the size by a constant factor we can assume without loss of generality that
every gate v in Φ computes a linear form or a bilinear form fv =

∑
j,k Tv(j, k)yjzk. Consider the

set V of product gates v = u × w in Φ so that fu and fw are linear forms. By a homogenization
argument, fu is a linear form in y1, . . . , yn and fw is a linear form in z1, . . . , zn. A simple argument
shows that each Fi is a linear combination of {fv}v∈V . By simple algebraic manipulations one gets
that the tensor rank of T is at most |V |. The size of Φ is hence at least Ω(|V |) ≥ Ω(R).

We remark that circuits of the kind that was discussed in the proof are called bilinear circuit.
The best known lower bounds for bilinear circuits for problems such as polynomial multiplication or
matrix multiplication are given in Refs. [BD80, Blä99, Shp03, Kam05].

Tensor rank is a generalization of matrix rank (which we understand pretty well) to higher
dimensions. However, we do not know of any explicit tensor of high rank. This shows the striking
difference between tensors and matrices. Another evidence of that difference is reflected in the
computational complexity of the two notions. Computing the rank of a matrix is fairly easy, e.g.
using Gaussian elimination. On the other hand, H̊astad proved that computing the tensor rank of a
given tensor is NP-hard [H̊as90].

Counting arguments show that most three-dimensional tensors are of rank Ω(n2) (similarly to
the existence of hard polynomials). However, the following question is open.

Open Problem 15. Find an explicit three-dimensional tensor whose rank is ω(n).

We now discuss a recent connection between tensor rank and formula-size lower bounds that was
found by Raz [Raz10]. For this we need to consider k-dimensional tensors, that are a straightforward
generalization of three-dimensional tensors.

Theorem 3.24 ([Raz10]). Let T : [n]k → F be an explicit tensor (i.e., given i1, . . . , ik we can

46

compute T (i1, . . . , ik) in polynomial time) with k = O(log n/ log log n). If the tensor rank of T is at
least nk(1−o(1)) (in particular, k must tend to infinity as n tends to infinity, since the tensor rank of
T is always at most nk−1) then permanent requires formulas of super-polynomial size.

Sketch. The proof consists of two different parts. First we analyzes set-multilinear polynomials. A
set-multilinear polynomial with respect to a set S of size k is a polynomial in k disjoint sets of
variables {Xi}i∈S so that every monomial that appears in it is of the form

∏
i∈S xi with xi ∈ Xi.

Raz showed that as long as k ≤ O(log n/ log logn) we can efficiently transform a general formula
computing a set-multilinear polynomial to a set-multilinear formula computing the same polynomial.
Namely, to a formula so that for every v = v1 × v2 in it, the polynomial fv1 is set-multilinear with
respect to a subset S1 ⊆ S, the polynomial fv2 is set-multilinear with respect to a subset S2 ⊆ S,
and S1 ∩ S2 = ∅. In particular, fv is set-multilinear with respect to S1 ∪ S2.

Theorem 3.25 ([Raz10]). Let Φ be a formula of size s that computes a set-multilinear polynomial
with respect to [k]. Then there exists a set-multilinear formula Ψ of size at most (O(log s))ks that
computes the same polynomial.

Proof. The proof is similar to the proof of Theorem 2.3.

Secondly, we prove that the maximal tensor rank that a set-multilinear formula can compute
is relatively small. Note that a tensor T : [n]k → F defines a set-multilinear polynomial fT in the
variables {xi,j : i ∈ [n], j ∈ [k]} in a natural way: the coefficient of

∏k
j=1 xij ,j in fT is T (i1, i2, . . . , ik).

Lemma 3.10. Let T : [n]k → F be a tensor with k ≤ O(log n/ log logn). If there exists a set-

multilinear formula of size nc for the polynomial fT then the tensor rank of T is at most nk(1−2−O(c)).

High-level. Raz proved the following intuitive statement. A set-multilinear formula of size nc that
computes the “polynomial with the maximal tensor rank” must have a very specific structure: in
particular, the topmost 2−O(c)k gates must be product gates. To prove this he used the following
three simple properties of tensor rank: (1) the tensor rank of an `-dimensional tensor is at most
n`−1, (2) the tensor rank of

∑
i Ti is at most the sum of the tensor ranks of the Ti’s, and (3) the

tensor rank of T1 ⊗ T2 is at most the product of the tensor ranks of T1 and T2 (if T1 : [n]k1 → F and
T2 : [n]k2 → F, then T1 ⊗ T2 : [n]k1+k2 → F is defined by T1 ⊗ T2(̄i1, ī2) = T1(̄i1)T2(̄i2)). The proof of
this structure is too long to include here, but the idea is that properties (2) and (3) above tell us that
tensor rank cannot increase too quickly in a formula, and property (1) tells us that we should do the
sum operations “as low as possible.” This argument could be thought of as a convexity argument.

With this structure, we can write fT as a product of at least k′ = 2−O(c)k polynomials of the
form fTi . Property (1) tells us that the tensor rank of each Ti is at most nki−1, where

∑
i ki = k.

Now, property (3) implies that the tensor rank of T is at most nk−k
′
, since T = T1 ⊗ T2 ⊗ · · · ⊗ Tk′ ,

as claimed.

The theorem and lemma above tell us that if a k-dimensional tensor T with k ≤ O(log n/ log log n)
has tensor rank at least nk(1−o(1)) then fT cannot be computed by a polynomial size formula, as
otherwise it can also be computed by a polynomial size set-multilinear formula and this is impossible.
The conclusion about permanent holds by its completeness and the assumption that T is explicit
(see Theorem 1.1).

47

Currently, the best lower bound on tensor rank is Ω(nbk/2c) by Nisan and Wigderson [NW96] for
k-dimensional tensors, e.g., the symmetric tensor T (i1, . . . , ik) = 1 iff |{i1, . . . , ik}| = k. Here is a
sketch of the simple proof of such a lower bound: Take a tensor T and write it as an nbk/2c by ndk/2e

matrix M by partitioning its k “dimensions” to two disjoint sets. Observe that if T has rank one
then M has rank one as well. This implies that the tensor rank of T is at least the rank of the matrix
M . Hence, if M has full rank then T has rank at least nbk/2c. We note, however, that much tighter
lower bounds are required in order to obtain lower bounds for the formula size of the permanent.

3.8.3 Elusive Functions

We now discuss the Elusive Functions approach for proving circuit-size lower bounds suggested by
Raz [Raz08]. Here too we focus on a particular example in order to explain the more general approach.

There are several structure results that we can use as the starting point of the argument. Here
we (roughly) use the one given by Theorem 2.7. Let f be a polynomial of degree d in the variables
x1, . . . , xn. Given a circuit Φ computing f , there exist s ∼ |Φ| polynomials f1, . . . , fs such that

f =
∑
i

fi, (3.1)

where every fi can be written as fi = fi,1 · fi,2, where fi,1, fi,2 are of degrees at most 2d/3.

We now wish to understand how the coefficients of the monomials in fi look like. For every
T = (t1, . . . , tn) ∈ Nn we define the monomial xT = xt11 · · ·xtnn . We denote deg(T) =

∑
k tk. Given

T ∈ Nn and j ∈ {1, 2}, let yi,j(T) be the coefficient of the monomial xT in fi,j . Now, think of the
yi,j(T)’s as new variables and define Yi = Yi,1 ∪ Yi,2, where Yi,j = {yi,j(T) : deg(T) ≤ 2d/3}. It
follows that the coefficient of xT in fi is

∑
T1+T2=T yi,1(T1) · yi,2(T2). In particular, this coefficient

is a degree two polynomial in the variables Yi. This argument shows that each coefficient in f is
a degree two polynomial in the variables Y =

⋃
i Yi. Denote the size of Y by S. We have that

|Y | = S ≤ O(n2d/3s).

Let N =
(
n+d
d

)
. We think of [N] as being the set of all T ∈ Nn of degree at most d. Consider

the polynomial map ϕ from FS to FN that is defined above. Namely, the T ’th output of ϕ is∑s
i=1

∑
T1+T2=T yi,1 · yi,2, i.e., the degree two polynomial corresponding to the coefficient of the

monomial xT in f . Now, every substitution of field elements to the variables Y defines a degree
d polynomial in the variables x1, . . . , xn. We say that this polynomial is in the image of ϕ. More
importantly, every degree d polynomial that has a circuit of size roughly s is contained in the image
of ϕ. In other words, in order to find an explicit polynomial that cannot be computed by circuits of
size s, we just need to find an explicit point in FN that is not in the image of the degree two map
ϕ. Why should such a point exist? Well, if the circuits are not too large, i.e., S � N , then the
input dimension of ϕ, S, is much smaller than the output dimension, N , so such points must exist
(see also Lemma 3.1). Raz called such points Elusive Functions, as they elude the maps defined by
small circuits. To conclude, separating VNP from VP boils down to solving an algorithmic problem:
finding a point outside the image of a given degree two polynomial map.

The example above considers the problem of eluding degree two polynomial maps. More generally,
Raz proved that if one can elude degree r maps ϕ : FS → FN , for many settings of r, S,N , then a
lower bound on the circuit complexity of the permanent follows.

48

3.8.4 Geometric Complexity Theory

We now address Mulmuley and Sohoni’s approach for showing that VP 6= VNP [MS01, MS08], which
is called geometric complexity theory (GCT). For simplicity, we focus on the case where the underlying
field is C. We also focus on a specific goal: showing that permanent cannot be “embedded” in a
polynomial size determinant, solving Open Problem 1. To argue this, GCT suggests to look at the
symmetries of both determinant and permanent.

Consider the determinant of an n × n matrix X = (xi,j). As a vector of coefficients, it is an

N -dimensional vector with N being roughly
(
n2

n

)
, as it is a multilinear homogeneous polynomial

of degree n in n2 variables. Every n × n matrix U can act on N -dimensional vectors by linearly
transforming the variables X: Given a polynomial f(X), which is also an N -dimensional vector,
we define U ◦ f(X) = f(U−1X) (indeed, (U1U2) ◦ f = U1 ◦ (U2 ◦ f)). An important property of
determinant (that in fact uniquely defines it) is that if U is in SL(n,C), that is, DET(U) = 1, then
U ◦ DET = DET. Moreover, any U such that U ◦ DET = DET is in SL(n,C). In other words,
SL(n,C) is in the stabilizer of determinant.

The stabilizer of permanent is different. If we act with SL(n,C) on permanent, we may change
it to a different polynomial. However, every n × n permutation matrix Π is in the stabilizer of the
permanent,

Π ◦ PERM(X) =
∑
σ∈Sn

n∏
i=1

xΠ(i),σ(Π(i)) =
∑
π∈Sn

n∏
i=1

xi,π(i) = PERM(X).

This difference between determinant and permanent is the reason, according to GCT, that the
permanent cannot be embedded in a small determinant. In rough terms, permanent is much less
symmetric than determinant, its stabilizer is not as rich, and so in order to embed permanent in
determinant we must use high dimensions, to be able to fit the disorder. To prove this intuitive
claim, GCT suggests to use notions from many other areas of mathematics, such as representation
theory, invariant theory and algebraic geometry. It seems, however, that the current mathematical
knowledge is very far from being able to prove even simpler claims.

The appealing part of GCT is that it seems to overcome the barrier of natural proofs (see Sec-
tion 3.9 below). Specifically, it is known that the stabilizers of both determinant and permanent
characterize them, e.g., the only polynomial f so that A ◦ f = f for all A in the stabilizer of deter-
minant is f = DET, and similarly for the permanent. This is highly unusual, in the sense that a
random polynomial has a trivial stabilizer, and in particular it is not characterized by it. Intuitively,
this means that if indeed we prove a lower bound based on these arguments, it may work only for a
small family of polynomials. Thus, (perhaps) overcoming the natural proofs barrier.

3.8.5 Sum-of-Squares Problem

In [HWY10a] a new approach for proving lower bounds on the size of noncommutative circuits
was given. Specifically, Hrubeš et al. [HWY10a] showed a reduction between the noncommutative
complexity of permanent to a classical mathematical problem called the sum-of-squares problem, that
arises in the areas of topology and algebra. The reader is referred to the introduction of [HWY10a]
for more background. We give a brief and partial survey of this result.

49

For an integer n, define the sum-of-square complexity of n as the minimal integer k so that there
exist n complex matrices M1, . . . ,Mn, each of dimension n× k, so that

1. for every i ∈ [n], we have MiM
t
i = I, where I is the n× n identity and M t is M transposed,

2. for every i 6= j in [n], we have MiM
t
j = −MjM

t
i .

Equivalently, the sum-of-squares complexity of n is the minimal integer k so that there exist complex
bilinear forms f1, . . . , fk, in {x1, . . . , xn} and {y1, . . . , yn}, so that the following equality holds

(x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) = f2
1 + · · ·+ f2

k .

The following theorem relates sum-of-squares complexity to noncommutative circuit complexity.
The sum-of-squares complexity can be defined over any field, but is related to circuit complexity
only over fields of characteristic different than two, in which

√
−1 exists.

Theorem 3.26 ([HWY10a]). If the sum-of-square complexity of n is at least Ω(n1+ε) with ε > 0
a constant, then permanent requires noncommutative circuits of exponential size over the complex
numbers.

We do not include the proof of this statement here, as it is too technical. We note, however,
that Hrubeš et al. [HWY10a] also proved lower bounds on the sum-of-squares complexity in some
restricted cases. For example, if the matrices Mi are restricted to be integer matrices, then k must
be at least Ω(n6/5). We also note that the sum-of-squares problem has a few other equivalent
formulations, e.g., as a question about degree four polynomials and as a question about “embedding
of unit spheres.”

3.9 Natural Proofs for Arithmetic Circuits?

As mentioned before, almost no lower bounds are known for Boolean circuits. A remarkable result
of Razborov and Rudich [RR97] gives a partial explanation for this lack of success. In their work,
Razborov and Rudich introduced the concept of natural proofs and showed that a natural proof
cannot yield a super-polynomial lower bound and that all existing techniques give rise to natural
proofs. Specifically, a property P of Boolean functions from {0, 1}n to {0, 1} is natural if it satisfies
the following requirements:

1. “many” functions have P,

2. it is “easy” to verify whether a given function has P by looking at its truth table, and

3. any Boolean circuit computing a function with the property P has to be of “large” size.

Razborov and Rudich showed that all known lower bounds were proved by analyzing natural prop-
erties (where the meaning of “many,” “easy” and “large” depend on the specific lower bound). The
key point in their argument is that a natural proof of a super-polynomial lower bound implies that
there are no families of pseudorandom functions. Namely, families of functions that “behave like” the

50

family of all functions, from the point of view of a computationally efficient observer: Properties (1)
and (2) imply that any family of pseudorandom functions must contain a function with the property
P. However, under widely believed complexity assumptions, families of pseudorandom functions that
can be computed by small circuits exist, and so condition (3) is violated. Another way of stating
this results is: if hard Boolean functions exist (i.e. our hardness assumptions are justified and so
pseudorandom functions exist) then it is hard to prove hardness results.

For arithmetic circuits no such argument exists. By considering known lower bounds one sees that
they are all “natural” in a sense. For example, the known lower bounds for multilinear complexity
and noncommutative complexity are obtained by studying the rank of the partial derivative matrix.
Notice that (1) simple counting arguments show that the rank of the partial derivative matrix of
almost all polynomials is high, and (2) given a polynomial as a list of coefficients, we can efficiently
compute the rank of its partial derivatives matrix.

In order to apply Razborov and Rudich’s reasoning all that is required is a construction of a family
of pseudorandom polynomials (based, of course, on reasonable hardness assumptions). Unfortunately
no such construction is known today. A natural approach would be to try to apply the construction
given in Ref. [RR97], that is based on the construction of Goldreich et al. [GGM86], in the arithmetic
setting. The problem with this idea is that the construction of Goldreich et al. is highly sequential
and by arithmetizing it one gets a polynomial of an exponentially high degree. For a further discussion
see Aaronson’s blog post on the topic [Aar08].

Open Problem 16. Give an arithmetic analog of Razborov and Rudich’s result. Specifically, give an
algebraic analog for pseudo-random function generators. I.e. a family of pseudo-random functions
that can be computed by polynomial size (and polynomial degree) arithmetic circuits.

3.10 Meta Lower Bounds

This Section dealt with the fundamental problem of proving that a certain computational task is
hard. Specifically, with the problem of finding explicit polynomials that require large circuits or
formulas. We conclude the Section with a meta discussion of the basic ideas behind this line of
research.

When trying to understand what a given computational class (like monotone circuits, multilinear
circuits, etc.) can or cannot do, it is natural to try and bring this class into some normal form.
The advantage of such a normal form is that it may unveil a certain weakness of the underlying
computational class. Finding such a weakness is, in many cases, the key step in proving hardness
results. Indeed, this line of thought appeared many times in this Section. Below is a table that
summarizes this approach for different computational classes.

51

circuit class normal form weakness

monotone circuits f =
∑

i higi, each hi, gi f has a few monomials
monotone of degree
∼ r/2

noncommutative arithmetic branching partial derivative matrix
formulas programs of low rank

ΣΠΣ over Fp in normal form well approximated by
a low degree polynomial

constant depth in normal from vector space of coefficients
circuits of low dimension

multilinear formulas sum of log-product partial derivative matrix
polynomials of low rank, for a random

partition
multilinear circuits sum of “structured” partial derivative matrix

polynomials of low rank for some
partition

bounded coefficient linear/bilinear circuits compute matrices
with small determinants

(approaches)

linear circuits in normal form cannot compute rigid
matrices

bilinear circuits in normal form result has a low tensor rank

Table 3.1: Summary of techniques and approaches

52

Chapter 4

Polynomial Identity Testing

Polynomial Identity Testing (PIT) is a fundamental problem in algebraic complexity: We are given
an arithmetic circuit computing a multivariate polynomial over some field, and we have to determine
whether that polynomial is identically zero or not. In other words, we want the polynomial to be
formally zero (i.e. that all its coefficients are zero) and not just zero as a function over the field. As
a simple example for the difference between these two notions of “zero,” consider x2 − x, which is
the zero function over F2 but not the zero polynomial. Note however, that if the size of the field is
higher than the degree of the polynomial then a polynomial is formally zero if and only if it is zero
as a function. This is a well-known fact that can be found, e.g., in Ref. [Alo99].

Solving polynomial identities is a central question in both complexity theory and algorithm-
design. For example, the best parallel algorithms for finding perfect matchings are based on testing
whether a given determinant is formally zero or not [Lov79, KUW86, MVV87, CRS95]. Other
algorithms based on identity testing are the primality testing algorithm of [AB03, AKS04], algorithms
for testing equivalence of read-once branching programs [BCW80], and more. In complexity theory,
identity testing played a major role in results such as IP = PSPACE [LFKN92, Sha92], MIP =
NEXPTIME [BFL91], and the proof of the PCP theorem [AS98, ALM+98]. Identity testing algorithms
also lead to interpolation/learning algorithms for sparse polynomials, see [BT88, GKS90, KS01]
and references within, for depth-3 circuits [Shp09, KS08], and for read-once arithmetic formulas
[SV08, SV09].

There are two well-studied models in which the PIT problem is considered. The first is the
so-called black-box model in which the only access to the circuit is by asking for its value on inputs
of our choice. It is clear that every deterministic algorithm in the black-box model must produce a
test set for the circuit, namely, a set of points such that if the circuit vanishes on all points in the
set then the circuit computes the zero polynomial. Note that such an algorithm is non adaptive as it
stops at the first nonzero input. The second setting is the non black-box model in which the circuit
is given as input. In particular, we have access to the polynomials that are computed at the gates
of the circuit. We call this model the white-box model. Clearly, the white-box model is the easier
amongst the two, although the PIT problem is notoriously hard also for this model.

The difficulty of the PIT problem stems from that the polynomial is not given explicitly as a list of
coefficients, but rather implicitly by a circuit or a formula. Converting an implicit representation to
an explicit one requires, in general, exponential time and so cannot be performed efficiently. On the

53

other hand, the advantage of such an implicit representation is that the underlying polynomial can be
evaluated efficiently on any given input, as long as field operations can be done efficiently. Using this
property, randomized (block-box) algorithms were designed for the problem [DL78, Zip79, Sch80].
These randomized algorithms require assignments from a relatively large field. To better understand
this, consider a black-box algorithm testing only zero-one assignments. As the “black-box” may
contain a polynomial “accepting” only a single input one can easily prove that 2n queries are required
to determine whether it computes the zero polynomial or not. Therefore, when considering PIT over
finite fields we allow the algorithm to test assignments from a polynomially large extension field.

The challenge that remains is to design deterministic algorithms for PIT, or, less ambitiously, to
reduce the amount of randomness required for solving the problem. The importance of derandomizing
PIT follows from its many applications. For example, the famous algorithm for primality testing of
Agrawal et al. [AKS04] is based on giving a deterministic algorithm for a specific polynomial identity,
using the derandomization ideas of Agrawal and Biswas [AB03]. Specifically, their algorithm verifies
that (x+ a)n − xn − a is the zero polynomial modulo n, for special values of a (indeed, the identity
is zero for every a ∈ Zn if and only if n is a prime). Another example is that derandomization of
PIT will imply a deterministic parallel algorithm for finding perfect matchings [MVV87] which is an
important open problem. Besides its algorithmic implications, derandomization of PIT may lead to
strong lower bounds for arithmetic circuits. In particular, as we shall soon see, if PIT can be solved
deterministically in the black-box model, then there exists an “explicit” polynomial that requires
exponential size arithmetic circuits.

Determining the complexity of PIT is one of the greatest challenges of theoretical computer
science. It is one of a few problems for which we have coRP algorithms [DL78, Zip79, Sch80],
but no deterministic sub-exponential time algorithms. A partial explanation for the hardness of
obtaining deterministic algorithms was given by Kabanets and Impagliazzo [KI04], who showed that
an efficient deterministic algorithm for PIT, even in the white-box model, implies that NEXP does
not have polynomial size arithmetic circuits. Namely, if PIT has polynomial time deterministic
algorithms, then either permanent cannot be computed by polynomial size arithmetic circuits or
NEXP 6⊆ P/poly. In Refs. [HS80a, Agr05] it was observed that a deterministic polynomial time
black-box PIT algorithm implies an exponential lower bound for a polynomial whose coefficients can
be computed in PSPACE. While this gives a stronger conclusion, we note that the result of [KI04]
holds both in the black-box model and in the white-box model, whereas that of [HS80a, Agr05] only
holds in the black-box model. Kabanets and Impagliazzo also showed an implication in the other
direction: a super-polynomial lower bound for the size of arithmetic circuits yields a deterministic
sub-exponential time algorithms for PIT. In Ref. [DSY09] an (almost) analogous result to [KI04] was
obtained for bounded depth circuits. These results highlight the tight connection between PIT and
lower bounds, and raise the question of obtaining efficient deterministic PIT algorithms for models
in which strong lower bounds are known.

We organize this Section according to what we view as the four main themes in the study of
the PIT problem. The first is devising randomness-efficient randomized algorithms for the problem.
These algorithms work for general arithmetic circuits. The second research direction is trying to
better understand the hardness of derandomizing PIT, mainly by connecting deterministic PIT
algorithms to circuit lower bounds. The third theme is the study of PIT for restricted models of
arithmetic circuits. Here the main research goal is not the restricted model itself, but rather the
understanding of the more general case, via some special instantiations of it. Finally, we discuss

54

results connecting PIT to other problems in algebraic complexity such as polynomial factorization
and the isolation lemma (first defined and proved in Ref. [MVV87]).

4.1 Generators and Hitting Sets

We start by defining the basic notions of generators and hitting sets and shortly discuss the relation
between them. A polynomial mapping G = (G1, . . . ,Gn) : Ft → Fn is a generator for the circuit class
M if for every nonzero n-variate polynomial1 f ∈ M, it holds that f(G) 6≡ 0. In other words, the
polynomial f ◦ G is not formally zero. The image of the map G is Im (G) = G(Ft). Ideally, t should
be very small compared to n. A set H ⊆ Fn is a hitting set for a circuit classM if for every nonzero
polynomial f ∈M, there exists a ∈ H such that f(a) 6= 0. A generator forM can also be viewed as
a polynomial map whose image contains a hitting set for M (when the field is large enough). That
is, for every nonzero f ∈M, there exists a ∈ Im (G) such that f(a) 6= 0. The following lemma shows
that we can efficiently construct a generator given a hitting set and vice versa. From this point on
generators are always polynomial maps.

Lemma 4.1. Let |F| > n. Given a hitting set H ⊆ Fn for a circuit class M, there is an algorithm
that, in time poly(|H| , n), constructs a map G : Ft → Fn with t = dlog n |H|e that is a generator for
M. Furthermore, the individual degrees of each Gi are bounded by n− 1.

In the other direction, let G : Ft → Fn be a generator for a circuit classM such that the individual
degrees of each Gi are bounded by r. If M contains polynomials with individual degrees at most D
then for every set S ⊆ F of size |S| > rD it holds that H = G(St) is a hitting set for M.

Sketch. Denote H = {ā1, . . . , āh}, where h = |H|. Let ȳ1, . . . , ȳh be different elements in Ft. We shall
define G so that G(ȳi) = āi. To do so, we need to solve a set of linear equations, in the coefficients
of G, that always has a solution due to choice of parameters.

The proof of the other direction follows by the fact that if f : Ft → F has individual degrees at
most rD then f(St) 6≡ 0. While this is a well-known fact we state it here as we shall use it many
times implicitly. The statement that we give is from Ref. [Alo99]. The proof is by a simple induction
and is omitted.

Fact 4.1 ([Alo99]). Let f(x1, . . . , xn) be a polynomial over an arbitrary field F. Suppose that the
degree of f as a polynomial in xi is at most ri, for 1 ≤ i ≤ n. Let Si ⊆ F be a set of size at least
ri + 1.2 Then, if f is not formally zero then there exists (α1, . . . , αn) ∈ S1 × S2 × . . .× Sn such that
f(α1, . . . , αn) 6= 0.

The following is an immediate and important property of generators.

Observation 4.1. Let f = f1 · f2 · · · fk be a product of nonzero polynomials fi ∈ M and let G be a
generator for M. Then f(G) 6≡ 0.

1We write f ∈M when f can be computed by a circuit from M.
2This is where we need F to be “large enough”.

55

At times, we would like to use only partial substitutions. Given a subset I ⊆ [n], we define the
mapping GI as (GI)i = Gi when i ∈ I and (GI)i = xi when i 6∈ I. In words, GI is the same as G in
entries in I and is the “original” variables in entries not in I. In addition, in a somewhat abuse of

notations, define f ◦ GI def
= f |GI to be the polynomial resulting from substituting the polynomial Gi

to the variable xi in f , for every i ∈ I.

Observation 4.2. Let M be a class of circuits and let G be a generator for n-variate polynomials
in M. Let I ⊆ [n] and f ∈ M be a nonzero polynomial. Then f |GI 6≡ 0. Moreover, if |F| is large
enough then there exists a ∈ Im

(
GI
)

such that f(a) 6= 0.

Finally, we observe that adding generators for two different circuit classes gives one generator for
both classes.

Observation 4.3. Let G′ : Ft′ → Fn be a generator for M′ and G′′ : Ft′′ → Fn be a generator for
M′′. Assume (w.l.o.g.) that the zero vector is in the image of both generators.3 Then G : Ft′+t′′ → Fn
defined as G(y′, y′′) = G′(y′) + G′′(y′′) is a generator for both M′ and M′′.

4.2 Randomized Algorithms

There are several different randomized algorithms for the PIT problem. The so-called Schwartz-
Zippel algorithm [DL78, Zip79, Sch80] is based on the observation that by substituting random
values to the variables, from a large enough domain, one gets, with high probability, a zero value
only if the polynomial is zero. This is perhaps the simplest possible randomized algorithm known and
in spite (or perhaps because) of its simplicity it has found many applications in theoretical computer
science [MVV87, LFKN92, Sha92]. The Schwartz-Zippel algorithm has a randomness-error tradeoff;
in order to reduce the error the algorithm uses more random bits. Chen and Kao [CK00] and Lewin
and Vadhan [LV98] designed algorithms that have time-error tradeoff; to achieve smaller error the
algorithms need to run for a longer time. These algorithms require less random bits, compared to the
Schwartz-Zippel algorithm, but have worse running time.4 The Chen-Kao algorithm [CK00] works
over the rational numbers, while the Lewin-Vadhan algorithm [LV98] works for any field. A different
algorithmic approach was suggested by Agrawal and Biswass [AB03]. They map the polynomial
computed by the circuit to a univariate polynomial of a very high degree, and then compute this
polynomial modulo a random low degree polynomial chosen from a carefully specified family of low
degree polynomials. This is a white-box algorithm, as in order to compute the remainder of the
polynomial division, one needs to access the intermediate computations performed at the gates of
the circuit. The advantage of this approach was demonstrated in Ref. [AKS04], where a deterministic
algorithm for primality testing, that follows this scheme was given.

3This is a small technical requirement that is needed for handling models in which shifting an input by a constant
is not permitted (e.g. ΣΠ circuits). Clearly, adding the zero vector to the image can be done at a very small cost.

4We note that using expanders graphs one can always obtain time-error tradeoffs (see, e.g., [HLW06]). The advantage
of Refs. [CK00, LV98] is that they provide additional insight into the structure of the PIT problem.

56

4.2.1 The Schwartz-Zippel Algorithm

As mentioned above, the Schwartz-Zippel algorithm is based on the observation that a nonzero low
degree polynomial does not have too many zeroes. The proof is by an easy induction on the number
of variables and is left to the reader.

Lemma 4.2 ([Zip79, Sch80]). Let f(x1, . . . , xn) be a nonzero polynomial of degree at most r, and
let T ⊆ F. If we choose a = (a1, . . . , an) ∈ Tn uniformly at random, then Pr[f(a) = 0] ≤ r/|T |.

The lemma suggests a randomized algorithm for PIT: given a degree r polynomial f(x1, . . . , xn),
pick at random a ∈ Tn and check whether f(a) = 0. If f 6≡ 0, the probability of error is at most
r/|T |, and if f ≡ 0, we are always correct. To achieve error of at most ε, we should pick a set T of
size |T | ≥ r/ε. This requires n · dlog(r/ε)e random bits. Another corollary of Lemma 4.2 is that there
is a small hitting set for all polynomial size arithmetic circuits. The proof is by a simple application
of the union bound.

Theorem 4.1. For every n, r, s and a field F of size |F| ≥ max(r2, s), there exists a set H ⊆ Fn of
size |H| = poly(r, s) that is a hitting set for all circuits of size at most s and degree at most r.

Sketch. We first describe the proof over finite fields. By counting the number of directed acyclic
graphs (DAGs for short) we get that there are at most |F|2s · s2s arithmetic circuits over F of size at
most s (this bound holds for circuits of fan-in two). Let H be a set of size 4rs chosen uniformly at
random from Fn. Lemma 4.2 tells us that the probability that a nonzero circuit Φ of degree at most
r vanishes on all points in H is at most (r/|F|)|H| ≤ |F|−4rs. By the union bound, it follows that
there is such a hitting set H for all nonzero circuits of size at most s and degree at most r.

When |F| is infinite, say F = Q, a slightly different argument is used. Here, the set of all
polynomials computed by some arithmetic circuit of size s is contained in the union of s2s manifolds,
one for each possible DAG, of dimension s each, that are obtained by varying the field constants.
One can now prove that when we pick a point at random (say, according to the Gaussian measure)
from Fn, the set of polynomials that vanish at that point and that are computed by size s arithmetic
circuits is a manifold of dimension at most s − 1. Repeating this argument O(s) times we get the
required result.

The hitting set guaranteed by the theorem is not explicit, of course, and the main challenge is to
come up with explicit constructions of hitting sets.

4.2.2 Time-Error Tradeoff

We now present the Chen-Kao and Lewin-Vadhan algorithms that give time-error tradeoffs. Namely,
to reduce the error the algorithm does not invest more random bits, but rather runs longer. As
mentioned earlier, using expander graphs, one can obtain such algorithms in a “generic” way (see
Section 1.3.3 in [HLW06]). However, the results of Refs. [CK00, LV98] provide more information on
the structure of the PIT problem compared to the generic algorithm and highlight how algebraic
independence could be used in this context.

57

Theorem 4.2 ([CK00]). Let f ∈ Q[x1, . . . , xn] have individual degree at most ri in xi, for every
i ∈ [n], and denote r = maxi ri. Assume that each coefficient of f has bit length at most L. Then
there is a randomized algorithm that for every ε > 0, decides correctly, with probability at least 1− ε,
whether f ≡ 0, using

∑n
i=1dlog(ri+1)e random bits and running time T = poly((L+r log(n log r))/ε).

For comparison, consider the case when f is multilinear. In this case, in order to get error
ε = 1/poly(n), the Schwartz-Zippel algorithm needs O(n log n) random bits, whereas the Chen-Kao
algorithm uses only O(n) random bits, but requires a longer running time.

Sketch. The idea behind the algorithm is that if (a1, . . . , an) are algebraically independent over Q
then f ≡ 0 iff f(a1, . . . , an) = 0. Clearly, algebraically independent numbers are transcendental over
Q, so instead of using them, we should pick numbers whose annihilating polynomial is of high degree.
However, such numbers must be irrationals and so we cannot use them as inputs either (they have
an infinite length bit representation). Nevertheless, one can hope that by truncating the ai’s we still
get numbers that low degree polynomials do not vanish on. This is of course not true as for any
given (rational) n-tuple we can find a low degree polynomial f that vanishes on it. Chen and Kao
solve this by considering the truncation of all conjugates to (a1, . . . , an) and then picking a conjugate
at random. The point is that no low degree polynomial can vanish on too many of those conjugates.
We now present the formal argument.

Denote ki = dlog(ri + 1)e and k = maxi ki. Let {pi,j}i∈[n],j∈[k] be the first nk primes. For every
i ∈ [n] and j ∈ [ki], let bi,j ∈ {0, 1} be a bit, and denote b = (bi,j)i,j . The basic observation behind the

algorithm is that if we set π
(b)
i =

∑ki
j=1(−1)bi,j

√
pi,j , then Galois theory (see, e.g., Morandi [Mor96])

tells us that
f(x1, . . . , xn) ≡ 0 ⇔ f(π

(b)
1 , . . . , π(b)

n) = 0, (4.1)

as the field Q(π
(b)
1 , . . . , π

(b)
j+1) has degree 2kj+1 over Q(π

(b)
1 , . . . , π

(b)
j), and so by induction if we know

that f(π
(b)
1 , . . . , π

(b)
j , xj+1, . . . , xn) 6≡ 0, then also f(π

(b)
1 , . . . , π

(b)
j+1, xj+2, . . . , xn) 6≡ 0. Note that π

(b1)
i

and π
(b2)
i are conjugates, for any b1 and b2.

Since the π
(b)
i ’s are irrational numbers, Chen and Kao proposed the following randomized algo-

rithm. Choose b uniformly at random (i.e. choose random conjugates) and let qi,j be the rounding
of
√
pi,j at the `’th position after the radix point in binary representation (` is the parameter that

determines the error). Set a
(b)
i =

∑ki
j=1(−1)bi,jqi,j . Accept if and only if f(a

(b)
1 , . . . , a

(b)
n) 6= 0. Note

that the algorithm uses
∑

i ki =
∑

idlog(ri + 1)e random bits.

We now give the idea behind the analysis. We will bound from below the value of f(a
(b)
1 , . . . , a

(b)
n)

as a function of r, ` and n. Galois theory also tells us that the product, over all choices of b, of

f(π
(b)
1 , . . . , π

(b)
n) is a nonzero integer. In other words, as long as f is nonzero,∣∣∣∏

b

f (b)
∣∣∣ ≥ 1, (4.2)

where f (b) = f(π
(b)
1 , . . . , π

(b)
n). The idea now is to show that each |f (b)| is not too large, which implies

that most of the multiplicands cannot be too small in absolute value. Consequently, as a
(b)
i is not

“too far” from π
(b)
i , the same conclusion holds for f(a

(b)
1 , . . . , a

(b)
n), implying that it is nonzero with

high probability. We now give a more formal explanation.

58

By the prime number theorem,
√
pi,j ≤ O(

√
nk log(nk)). Hence, regardless of b, |π(b)

i | ≤
O(k

√
nk log(nk)). As f has degree at most r in each variable, it has at most nr+1 monomials.

Since the bit length of each coefficient is at most L, we get that for every b,

|f (b)| = |f(π
(b)
1 , . . . , π(b)

n)| ≤ nr+1 · (O(k
√
nk log(nk)))r · 2L def

= 2m.

Equation (4.2) thus implies that, for every t > 0, the fraction of b’s for which |f (b)| ≤ 2−t is at
most m/(m+ t). In other words, the fraction of b’s for which |f (b)| > 2−t is at least t/(m+ t). We

now show that for every such b, and an appropriate choice of `, it holds that f(a
(b)
1 , . . . , a

(b)
n) 6= 0.

Indeed, as |qi,j − pi,j | ≤ 2−`, we have that for each b, |a(b)
i − π

(b)
i | ≤ k2−`. Using the estimate

|xe − ye| ≤ |x− y| · e ·max(x, y)e−1, we get that∣∣∣f(a
(b)
1 , . . . , a(b)

n)− f(π
(b)
1 , . . . , π(b)

n)
∣∣∣ ≤ 2m · 2−`+log r ≤(∗) 2−t−1,

where inequality (∗) holds when ` ≥ m+ log r + t+ 1. For such an `, we thus have∣∣∣f(a
(b)
1 , . . . , a(b)

n)
∣∣∣ > ∣∣∣f(π

(b)
1 , . . . , π(b)

n)
∣∣∣− 2−t−1 ≥ 2−t−1 > 0.

To better understand the parameters, for ` = m/ε + log r + 1 and t = ` − m − log r − 1, we
have that the error probability is at most m/(m + t) = ε. The number of random bits used is∑n

i=1dlog(ri + 1)e and the running time it takes to “prepare” the inputs {a(b)
i } is polynomial in n

and in ` ≤ O((L+ r log(n log r))/ε).

The algorithm seems to heavily rely on Q being the underlying field. Lewin and Vadhan [LV98]
showed how to extend it to the case of finite fields as well (in fact their algorithm works over any
field). The main idea is to find the “correct” finite field analogs of the notions used by Chen and
Kao [CK00]: irreducible polynomials instead of prime numbers, infinite power series instead of square
roots, and truncation modulo x` instead of truncating after the `’th bit. Since the algorithm and its
analysis are not very different than that of Chen and Kao, we refer the reader to Ref. [LV98] for a
proof.

Theorem 4.3 ([LV98]). Let f ∈ F[x1, . . . , xn] be of degree at most ri in xi over some finite field
F. Then there is a randomized algorithm that, for every ε > 0, decides correctly, with probability at
least 1− ε, whether f ≡ 0, using

∑n
i=1dlog(ri + 1)e random bits and running time T = poly(rn/ε).

This algorithm can work in the black-box model, given access to a polynomial size extension field of
F (unless F is already large enough).

4.2.3 The Agrawal-Biswass Algorithm

Assume that Φ is an arithmetic circuit computing a polynomial f of individual degrees smaller

than r. Consider the substitution xi = yr
i
. It is not hard to see that f(x1, . . . , xn) ≡ 0 iff fy

def
=

f(yr, . . . , yr
n
) ≡ 0. The idea of Agrawal and Biswass [AB03] is to use the Chinese Remainder

Theorem in order to reduce the degree of fy. Specifically, they find a relatively small set of low degree
co-prime polynomials, {gi(y)}i∈I , and check whether fy ≡ 0 mod gi, for each i ∈ I. The Chinese
Remainder Theorem implies that when

∑
i deg(gi) > deg(fy) it holds that f ≡ 0 ⇔ ∀ i ∈ I fy ≡ 0

59

mod gi. As the gi’s are of low degree, it is relatively easy to verify whether fy ≡ 0 mod gi when
Φ is given to us. Agrawal and Biswass in fact do something more sophisticated. They give a set of
polynomials that are not co-prime, but rather the least common multiple of any large enough subset
of them (say, of size at least ε|I|) has high degree. Their randomized algorithm simply picks one gi
at random, and checks whether fy ≡ 0 mod gi. This gives an algorithm whose error is at most ε, as
the following theorem shows.

Theorem 4.4 ([AB03]). Let Φ be an arithmetic circuit of size s computing a polynomial f of degree
at most ri in xi, for every i. For every ε > 0, there is a randomized algorithm that, with probability
at least 1 − ε, decides correctly whether f ≡ 0. The algorithm uses d

∑n
i=1 log rie random bits and

works in time poly(n, s, 1/ε, log(q)), when the field is of size q. For fields of characteristic zero, a
similar result holds, with a dependance on the bit length of the coefficients instead of the field size.

4.3 PIT and Lower Bounds: Hardness-Randomness Tradeoffs

The hardness-randomness paradigm in computer science (roughly) says that hard functions exist
iff one can derandomize any (polynomial time) randomized algorithm. The intuition being that if
a function is hard to compute then its output looks random (to an efficient algorithm) and vice
versa. A prominent example is Impagliazzo and Wigderson’s proof that if E requires exponential size
Boolean circuits then BPP = P [IW97]. In other words, they showed that if there are hard (explicit)
functions then randomness is not essential for computation. As for the other direction, Impagliazzo
et al. [IKW02] showed that derandomizing promise-BPP will imply that NEXP 6⊂ P/poly. In recent
years, similar results were obtained for arithmetic circuits. We shall now review these results and
sketch their proofs.

In [KI04] Kabanets and Impagliazzo showed that derandomizing PIT implies arithmetic lower
bounds for NEXP. More precisely, they proved the following theorem.

Theorem 4.5 ([KI04]). The following three assumptions cannot be simultaneously true.

1. NEXP ⊆ P/poly.

2. Permanent is computable by polynomial size arithmetic circuits over Z.

3. There is a (non-deterministic5) sub-exponential time algorithm for PIT.

Stated differently, derandomizing PIT implies either a Boolean lower bound for NEXP or an
arithmetic lower bound for permanent. We shall later see a result in the reverse direction as well,
namely, that lower bounds for arithmetic circuits imply derandomization of PIT. It is an interesting
example where a lower bound gives an upper bound (PIT algorithm) and vice versa. Before sketching
the proof, we describe one high-level part of it. Assuming that permanent has small circuits and
that we can solve PIT efficiently and deterministically, we can obtain an efficient non-deterministic
uniform algorithm for permanent: simply guess a small circuit for permanent and then verify its
correctness, using the self-reducibility of permanent and the PIT algorithm. As permanent is hard
for the polynomial hierarchy, we do not expect it to have an efficient non-deterministic algorithm.

5Recall that PIT is in co− RP, but is not known to be in NSUBEXP.

60

Sketch. Consider the Boolean language 0-1-Perm comprising of all pairs (M,v), where M is an n×n
matrix with 0/1 entries, v is a string of O(n log n) bits representing an integer and PERM(M) = v.
Assume for a contradiction that all three assumptions hold. We will reach a contradiction by showing
that these assumptions imply that co-NEXP ⊂ NSUBEXP = ∩ε>0NTIME(2n

ε
), which is false (this

can be shown by a diagonalization argument).

Valiant’s theorem that 0-1-Perm is #P-complete [Val79b] implies that if 0-1-Perm is in NSUBEXP
then P#P ⊂ NSUBEXP. In Ref. [IKW02] it was shown that NEXP ⊆ P/poly implies that NEXP = co-
NEXP = MA. By applying Toda’s theorem that PH ⊂ P#P [Tod91], it thus follows, under our
assumptions, that if 0-1-Perm is in NSUBEXP then co-NEXP ⊂ P#P ⊂ NSUBEXP.

It therefore suffices to show that if there is a (non-deterministic) sub-exponential time algorithm
for PIT and permanent is computable by polynomial size arithmetic circuits over Z, then 0-1-Perm is
in NSUBEXP. The idea is to use the self-reducibility of permanent. For an n× n matrix X = (xi,j),
denote by Xj the sub-matrix obtained by deleting the first row and j’th column from X. Thus,
PERM(X) =

∑n
j=1 x1,j ·PERM(Xj). Now, assuming that permanent has polynomial size arithmetic

circuits, we can guess such a circuit Φn using non-determinism. Given such a guess Φn, construct,
for every 1 ≤ m ≤ n− 1, a circuit Φm computing the permanent of an m×m matrix by substituting
zero-one values to the appropriate variables in Φn. Now, for every 1 < m ≤ n, write the identity

Φm(X(m)) =
m∑
j=1

x
(m)
1,j · Φm−1(X

(m)
j),

where X(m) is an m×m matrix of variables. In addition, consider the identity Φ1(x) = x. It is not
difficult to show that if all these n identities hold, then Φn indeed computes permanent. Using the
sub-exponential time PIT algorithm, we can verify that all these identities hold, and thus guarantee
that Φn computes permanent. This shows that 0-1-Perm is in NSUBEXP, which is what we wanted
to prove.

This proof holds in the black-box model as well as in the white-box one. For the case of black-box
algorithms, Heintz and Schnorr, and later Agrawal, proved a more straightforward result [HS80a,
Agr05]. The idea behind the proof is that given a small hitting set, we can find a nonzero polynomial
that vanishes on all the points of the set. This immediately implies that this polynomial has high
circuit complexity.

Theorem 4.6 ([HS80a, Agr05]). Let T : N → N be a monotone increasing function. If there is a
black-box deterministic PIT algorithm that runs in time T (s) for arithmetic circuits of size s, then
there is an n-variate polynomial whose coefficients are computed in PSPACE that requires arithmetic
circuits of size at least T−1(exp(n)), where exp(n) means cn with c > 1 and T−1 is the inverse
function of T .

For example, if T (s) = poly(s), we get an exponential lower bound for the size of arithmetic
circuits, and if T (s) = exp(poly(log s)), the lower bound is of the form exp(nε).

Sketch. Let H be the hitting set generated by the algorithm. Clearly, |H| ≤ T (s). Using simple
interpolation, we can compute in PSPACE the coefficients of a nonzero polynomial f(y1, . . . , yn),
with n = O(log T (s)), satisfying f(a) = 0 for every a ∈ H. It is clear that f cannot be computed by

61

a size s circuit, as any circuit of size at most s that vanishes on all points of H is the zero polynomial.
The circuit-size of f is thus at least s = T−1(exp(n)), as required.

This proof highlights, in a more direct way, the relation between PIT and proving circuit lower
bounds. This result, however, does not imply lower bounds for permanent as we are only guaranteed
a lower bound for a polynomial whose coefficients are computed in PSPACE. It is an interesting
question whether from any black-box PIT algorithm one can get a lower bound for a polynomial in
VNP.

Open Problem 17. Assume that an arithmetic circuit class C has a PIT algorithm that runs in
time poly(s) for circuits of size s. Does the permanent require super-polynomial circuits from C?

So far we have seen that PIT algorithms imply lower bounds. Next we shall see the other direction,
that lower bounds for arithmetic circuits imply efficient deterministic PIT algorithms. The first such
result was proved by Kabanets and Impagliazzo [KI04].

Theorem 4.7 ([KI04]). Let F be a large enough field (of size at least some polynomial in n) and
s : N → N be a monotone increasing function. Assume that a multilinear m-variate polynomial
f(x1, . . . , xm) cannot be computed by size s(m) arithmetic circuits over F. Then, there is a deter-
ministic black-box PIT algorithm for arithmetic circuits in n variables, of polynomial degree over F,
that runs in time exp((s−1(poly(t)))2) for size t = t(n) ≥ n circuits.

To make sense of the parameters, consider the case when we have an exp(n) lower bound. Then,
we get a PIT algorithm for that runs in time exp((log n)2) for poly(n)-size circuits. If the lower
bound is exp(nε), then we get an exp(poly(log n))-time PIT algorithm for poly(n)-size circuits. In
general, if the lower bound is super-polynomial in n, then the PIT algorithm will be sub-exponential.

Proof. The proof is similar in nature to the proof of Nisan and Wigderson [NW94] and in partic-
ular uses an arithmetic analog of the so-called NW-generator. The next lemma both defines and
guarantees the existence of NW-designs. The proof of the lemma can be found in Ref. [NW94].

Lemma 4.3. Let n,m be integers such that n < 2m. There exists a family of sets S1, . . . , Sn ⊂ [k]
with k = O(m2/ log(n)) so that (1) for each i ∈ [n] it holds that |Si| = m, and (2) for every i 6= j in
[n] we have that |Si ∩ Sj | ≤ log(n). This family of sets can be constructed deterministically in time
poly(n, 2k). Such a family is called an NW-design.

Given such an NW-design and the “hard” polynomial f , we construct the hitting set as follows.
Let m = m(t) be such that s(m) > tO(1), the exact value of the O(1) in the exponent will be
determined later. Consider an NW-design S1, . . . , Sn with parameters m and n (note that n <
2m, as f is multilinear and hence s is at most exponential). Define the map G : Fk → Fn as
G(y) = (f(y|S1), . . . , f(y|Sn)), where y|Si is the restriction of y to the entries in Si, namely, y|Si =
(yj1 , yj2 , . . . , yjm) with Si = {j1 < j2 < · · · < jm}.

We now show that for any size t circuit Φ, it holds that Φ ≡ 0 iff Φ(G) ≡ 0. One direction is
trivial. The other direction is proved using the “hybrid” method. Assume for a contradiction that
Φ(G) ≡ 0 but Φ 6≡ 0. Then, there exists i ∈ [n] such that

Φ(f(y|S1), . . . , f(y|Si), xi+1, . . . , xn) 6≡ 0 but Φ(f(y|S1), . . . , f(y|Si+1), xi+2, . . . , xn) ≡ 0.

62

As F is large enough, by fixing the values of xi+2, . . . , xn to appropriate field elements ai+2, . . . , an,
we get that there is a circuit Ψ in k + 1 variables such that

Ψ(y, z)
def
= Φ(f(y|S1), . . . , f(y|Si), z, ai+2, . . . , an) 6≡ 0 but Ψ(y, f(y|Si+1)) ≡ 0.

Without loss of generality, assume that Si+1 = [m]. We can further fix values bm+1, . . . , bk to
ym+1, . . . , yk such that

Ψ′(y1, . . . , ym, z)
def
= Ψ(y1, . . . , ym, bm+1, . . . , bk, z) 6≡ 0.

Here is the point where we use the design property: as for every j < i+1 we have |Sj ∩Si+1| ≤ log n,
each of the polynomials f(y|Sj)

∣∣
ym+1=bm+1,...,yk=bk

has a circuit of size poly(n) (it is a multilinear

polynomial with ≤ log n variables). Therefore, Ψ′ has a circuit of size t+ poly(n). Since

Ψ′(y1, . . . , ym, z) 6≡ 0 but Ψ′(y1, . . . , ym, f(y1, . . . , ym)) ≡ 0,

we get that z − f(y1, . . . , ym) is a factor of Ψ′. The following factoring result by Kaltofen [Kal89]
now tells us that f(y1, . . . , ym) has a circuit of size poly(t(n) + poly(n)) = tO(1).

Theorem 4.8. There is a probabilistic polynomial time algorithm that gets as input an arithmetic
circuit of size s computing a polynomial g ∈ F[x1, . . . , xn] of total degree at most r and outputs, with
probability at least 3/4, integers e1, e2, . . . , er′ > 0 and circuits Φ1,Φ2, . . . ,Φr′, each of size at most

poly(s, r, log |F|), computing irreducible polynomials h1, h2, . . . , hr‘ such that g =
∏r′

i=1 h
ei
i . In case

the characteristic q of F divides any ei, i.e., ei = qkie′i with e′i not divisible by q, the algorithm returns

e′i instead of ei, and the corresponding arithmetic circuit computes hq
ki

i instead of hi. For F = Q, the
size of the produced arithmetic circuits is at most poly(s, r, L), where L is the size of the maximal
coefficient in g.

The polynomial f(y1, . . . , ym) thus has an arithmetic circuit of size tO(1). The lower bound on f
implies that tO(1) > s(m), but this contradicts our choice of m. We conclude that Φ ≡ 0 iff Φ(G) ≡ 0.
As f and Φ have degrees poly(n), we get that Φ(G) has degree at most poly(n). Thus, if we evaluate
Φ(G) on all points in Ak, where A ⊆ F is a set of size poly(n), we get that Φ ≡ 0 iff Φ(G(Ak)) = {0}.
This gives a hitting set of size poly(n)k = poly(n)m

2/ logn = exp((s−1(tO(1)))2).

Using the ideas of the theorem above and of Theorems 2.9 and 4.6, Agrawal and Vinay proved
that a polynomial size hitting set for depth-4 circuits gives rise to a quasi-polynomial size hitting set
for general arithmetic circuits [AV08].

Theorem 4.9 ([AV08]). If for every s there is an efficient way to construct a hitting set of size
poly(s) for ΣΠΣΠ arithmetic circuits of size s, then in time exp(log2(s)) one can construct a hitting
set for general arithmetic circuits of size s.

Sketch. The idea is that if we have a polynomial size hitting set for depth-4 circuits, then Theo-
rem 4.6 guarantees a polynomial that requires exponential size depth-4 circuits. Theorem 2.9 and
the discussion following it imply that this polynomial actually requires exponential size general arith-
metic circuits. By Theorem 4.7, this implies the existence of a quasi-polynomial size hitting set for
general circuits.

63

The following question is thus as interesting as the general PIT question.

Open Problem 18. Derandomize the black-box PIT problem for ΣΠΣΠ arithmetic circuits.

The result of Agrawal and Vinay requires an exp(n) lower bound for depth-4 circuits in order to
obtain exponential lower bounds for general circuits and thus derandomize PIT. But, what can we
conclude if we only have lower bounds of the form exp(nε) for depth-4 circuits, or even just super-
polynomial lower bounds? What if we have lower bounds for a larger depth? A close inspection
of the proof of Theorem 4.7 shows that the use of Kaltofen’s factoring algorithm requires the lower
bound to hold for general arithmetic circuits and not just for bounded depth circuits (this is the case
since Kaltofen’s factoring algorithm does not preserve depth). A partial answer was given in [DSY09]
where it was shown that exponential lower bounds for depth-d circuits imply quasi-polynomial time
deterministic algorithms for PIT of depth-(d− 5) circuits, assuming that the polynomial computed
by the circuit has individual degrees at most poly(log n). The idea behind this result is to replace
Kaltofen’s factoring algorithm with the following root finding result that basically says that if z −
f(x1, . . . , xn) is a factor of Ψ(x1, . . . , xn, z), where Ψ is a small depth-d circuit with a small degree
in z, then f can be computed by a small arithmetic circuit of depth at most d+ 3.

Theorem 4.10. Let n, s, r,m, t, d be integers such that s ≥ n. Let F be a field which has at least
max{mt + 1, r + 1} elements. Let g(x1, . . . , xn, z) ∈ F[x1, . . . , xn, z] be a nonzero polynomial with
deg(g) ≤ t and degz(g) ≤ r (i.e. the degree of z in g is at most r) that has a depth-d arithmetic
circuit of size s over F. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial with deg(f) ≤ m such that
g(x1, . . . , xn, f(x1, . . . , xn)) ≡ 0. Then f(x1, . . . , xn) can be computed by a circuit of size poly(s,mr)
and depth d+ 3 over F.

We do not prove this theorem here but only give the idea behind the proof. Newton’s method
(also known as Hensel’s lifting lemma) provides a general way for finding roots of a given function.
In our case, we apply this method to the polynomial g with the intention of finding the root f of
g. The proof follows by showing that, with some careful manipulation, Newton’s method actually
implies that the complexity of f is not much larger than that of g.

Given the theorem above one can follow the proof of Theorem 4.7 to conclude the following analog
for the case of bounded depth circuits.

Theorem 4.11 ([DSY09]). Let d be an integer, ε > 0 a real number and F a finite field. Let
f ∈ F[x1, . . . , xn] be an explicit polynomial of degree poly(n) such that any depth-d circuit computing
it has size at least 2n

ε
. Then, the black-box PIT problem for polynomial-size depth-(d − 5) circuits,

having individual degrees at most poly(log n), can be solved deterministically in time exp(poly(logn)).

It is an intriguing question whether one can factor polynomials, or even just compute factors that
are linear in some variable, without increasing the depth by much.

Open Problem 19. Let f(x1, . . . , xn, z) be computed by a depth-d size s circuit. Is it true that any
factor of f can be computed by a depth-O(d) size poly(s) circuit? What about factors that are linear
in z?

The results that were described in this section give tight relations between PIT and lower bounds.
In Section 3.6 we saw that quasi-polynomial lower bounds are known for multilinear formulas, and

64

that for constant-depth multilinear formulas exponential lower bounds are known. Unfortunately,
the results of [KI04, DSY09] require lower bounds for general circuits and not just for multilinear
circuits. We therefore would like to understand whether one can use lower bounds for weak models
to obtain PIT algorithms (for the corresponding weak models). As we shall see in Section 4.8,
[SV08, SV09] use a lower bound for sums of read-once formulas, to obtain a PIT algorithm for that
model. It is a very interesting question to understand whether this can be achieved for other models
as well.

Open Problem 20. Is there a way to transform lower bounds for multilinear circuits to PIT al-
gorithms for some model of multilinear circuits or formulas? What if we have a (slightly) super-
polynomial lower bound for arithmetic formulas, can we use it to get a sub-exponential time PIT
algorithm for arithmetic formulas?

As we shall see in Section 4.5, Raz and Shpilka [RS05] obtained a polynomial time (white-box)
PIT algorithm for noncommutative formulas. Their proof does not transform the lower bound of
Nisan [Nis91], discussed in Section 3.4, to a PIT algorithm but rather relies on the intuition gained
in the proof of the lower bound to design the algorithm. Therefore, we may hope that even if there
is no clear way of transforming lower bounds for multilinear formulas into PIT algorithms, that we
can still use the intuition gained in the lower bounds proofs to design such algorithms.

Open Problem 21. Give a deterministic sub-exponential time identity testing algorithm for multi-
linear formulas.

4.4 Sparse Polynomials

Sparse polynomials are polynomials having a small number of monomials. We will be mostly inter-
ested in the case when the number of monomials m is polynomial in the number of variables. In
other words, we will be interested in polynomials that have polynomial size ΣΠ circuits. This model
is of course the simplest and “most explicit” way for computing and representing a polynomial: the
polynomial is given by its list of coefficients. As such, the polynomial identity testing problem for this
model attracted a lot of research and many algorithms were devised for it, see Refs. [KS01, BHLV09]
and references therein.

In this section we give the proof of Klivans and Spielman [KS01] for identity testing of sparse
polynomials. The main idea is to reduce the multivariate problem to a univariate problem. Namely,
to generate from each sparse polynomial f a univariate polynomial f̂ and then check whether f̂ ≡ 0.

Assume that the unknown polynomial is f(x1, . . . , xn) and that its (total) degree is smaller than r.
Consider the substitution xi = yr

i
. Any two different monomials of f are mapped to different powers

of y, and so f̂(y)
def
= f(yr, ..., yr

n
) ≡ 0 iff f ≡ 0. Therefore, all that we have to do now is to check

whether a univariate polynomial is identically zero or not. This can be easily achieved by querying
f̂ on deg(f̂) many points. The problem with this approach is that deg(f̂) can be exponentially
large. Recall tat this is the same problem that faced Agrawal and Biswass in Section 4.2.3. Here,
Klivans and Spielman handle this by picking some prime p = O(max(r,mn + 1)) and making the
substitution xi = yr

i mod p. The problem now is that different monomials in f can be mapped to the
same monomial in f̂ and can therefore cancel each other. To overcome this difficulty, they consider

65

all substitutions of the form xi = yk
i mod p for all integers k ∈ [mn+ 1]. They show that for at least

one of these k’s, at least one monomial of f will be uniquely mapped to a monomial of f̂ , and this
will give that f ≡ 0 iff f̂ ≡ 0, with the additional property deg(f̂) < rp. By evaluating f̂ in rp many
points we can check whether f ≡ 0. We now give the formal details of the proof.

Theorem 4.12 ([KS01]). Let f be a nonzero n-variate polynomial of individual degrees smaller than
r, that has (at most) m monomials over F. Let p be a prime larger than max(r,mn+1). Then, there

is some k ∈ [mn + 1] such that the univariate polynomial f̂(y)
def
= f(y, yk

1 mod p, . . . , yk
n−1 mod p)

is not identically zero, and of degree at most rp − 1. Hence, if S ⊂ F is of size at least rp then
evaluating f on all points of the form (y, yk

1 mod p, . . . , yk
n−1 mod p) for y ∈ S is a hitting set for

f . In particular, when m and r are polynomial in n we get a deterministic polynomial time PIT
algorithm by testing this for every k ∈ [mn+ 1].

Proof. Let f =
∑m

j=1 cjx
r(j), where r(j) = (r(j)1, . . . , r(j)n) and xr(j) = x

r(j)1

1 x
r(j)2

2 · · ·xr(j)nn . Con-

sider the substitution xi = yk
i mod p. The monomial xr(j) is mapped to y

∑n
i=1 r(j)i(k

i−1 mod p). We
will show that for some choice of k ∈ [mn+ 1], there exists j ∈ [m] such that the monomial xr(j) is
mapped uniquely to y

∑n
i=1 r(j)i(k

i−1 mod p), which implies that f̂(y) 6≡ 0. To see this, observe that if
xr(j) and xr(j

′) are mapped to the same y monomial, then
∑n

i=1 r(j)i(k
i−1 mod p) =

∑n
i=1 r(j

′)i(k
i−1

mod p). The last equality implies that for any such pair j 6= j′, it holds that
∑n

i=1 r(j)ik
i−1 mod p

=∑n
i=1 r(j

′)ik
i−1. As r < p, it holds that r(j) 6= r(j′) modulo p. Thus, a bad “event” can happen

only if k is a root of the nonzero polynomial gj,j′(z)
def
=
∑n

i=1(r(j)i − r(j′)i)zi−1 over Fp. Fix some
j0 such that cj0 6= 0. There are m different polynomials gj0,j(z). As deg(gj0,j(z)) ≤ n− 1, it follows
that there are at most mn different values of k that can be roots of any of these polynomials. Since
mn+ 1 < p, there exists some k ∈ [mn+ 1] that is not a root of any of the gj0,j(z)’s. For this k, we
get that xr(j0) was mapped uniquely to some y monomial.

The bit length of the points on which we evaluate f can be as large as m logm, however, using the
Chinese Remainder Theorem this can be reduced to O(log nr). We omit the details of this reduction.

As mentioned above, there were other deterministic PIT algorithms for sparse polynomials prior
to [KS01]. The main difference between the various algorithms is the bit length of the points on
which one evaluates the polynomial and the exact size of the hitting set constructed. We refer the
interested reader to Ref. [KS01] where these issues are discussed.

In [BHLV09] a slight twist of the above result was considered in which we do not have a polynomial
bound on the degree of f but instead we are assured that f (which is sparse) is computed by a size
s circuit (that does not necessarily have small depth). This implies that deg(f) ≤ 2s. Note that the
size of the hitting set constructed in Theorem 4.12 is polynomial in the degree, which is not efficient
when s = poly(n). Bläser et al. gave a deterministic PIT algorithm, with running time poly(m,n, s),
for such circuits [BHLV09]. The algorithm is black-box over Z and white-box over finite fields. Their
black-box algorithm basically evaluates the polynomial on points of the form (kr

0
, . . . , kr

n−1
) mod p

for several different primes p and all points k ∈ Fp.6

6In fact, the size of the hitting set over Z is polynomial in L, which is an upper bound on the bit length of the
coefficients of the underlying polynomial.

66

4.5 Noncommutative Formulas

In Ref. [RS05] a deterministic, polynomial time, white-box algorithm for PIT of noncommutative
formulas was given. Besides the model of sparse polynomials, this is the only “complete” model of
computation for which polynomial time deterministic PIT algorithms are known. This algorithm also
plays a role in Saxena’s [Sax08] PIT algorithm for the so-called diagonal circuits, see Section 4.7.1.

The algorithm of Raz and Shpilka [RS05] relies on the fact, shown in Section 3.4, that a noncom-
mutative formula can be simulated efficiently by an ABP. The algorithm, in fact, works also for the
more general model of noncommutative ABP’s. We first give a sketch of the argument. Given an
ABP A, computing a polynomial f(x1, . . . , xn), we can construct, for every monomial of the form
xixj (i may be equal to j), a new ABP that computes the part of f containing all monomials that
“start” with xixj . Since we are working in the noncommutative polynomial ring, A computes the
zero polynomial iff all the new ABP’s compute the zero polynomial as well. We now explain how
to merge the new ABP’s to a single ABP Â, which has one less level, such that Â is identically
zero iff A is identically zero. Â is constructed by removing from A the vertices of level 1 and the
edges adjacent to them, and then connecting the source directly to level 2. The technical part is the
labelling of the new edges, going out of the source, with the “correct” linear functions (recall that
every edge is labeled with a linear form). The naive way of replacing each term of the form xixj
with a new variable yi,j does not work, as in this way the number of variables introduced after k
steps can be as large as n2k. The main point in the argument is that the number of new variables
is never larger than O(s + n), and this is achieved by the “correct” labelling. We now give a more
formal explanation.

Let A be an ABP with levels 0, ..., d. Denote by m1 and m2 the number of vertices in levels 1
and 2 of A, respectively. Denote by vin the source of A and by vout the sink of A. Let v1, ..., vm2 be
the vertices in level 2 of A. Let A(v, vout) be the polynomial that is computed by the ABP with the
vertex v as source and vout as sink. By definition,

A(vin, vout) =
∑
i∈[m2]

A(vin, vi) · A(vi, vout).

For every i ∈ [m2], we can express A(vin, vi) as

A(vin, vi) =
∑

1≤k≤n
αi,kxk

2 +
∑

1≤j<k≤n
βi,j,kxjxk +

∑
1≤j<k≤n

γi,j,kxkxj .

We thus have

A(vin, vout) =
∑

1≤k≤n
xk

2
∑
i∈[m2]

αi,k · A(vi, vout)

+
∑

1≤j<k≤n
xjxk

∑
i∈[m2]

βi,j,k · A(vi, vout) +
∑

1≤j<k≤n
xkxj

∑
i∈[m2]

γi,j,k · A(vi, vout).

The next claim now follows, as we are working in the noncommutative polynomial ring.

Claim 4.1. A computes the zero polynomial iff for every 1 ≤ k ≤ n,∑
i∈[m2]

αi,k · A(vi, vout) ≡ 0,

67

and for every 1 ≤ j < k ≤ n,∑
i∈[m2]

βi,j,k · A(vi, vout) ≡
∑
i∈[m2]

γi,j,k · A(vi, vout) ≡ 0.

For simplicity of notation, define the following vectors

αk = (α1,k, α2,k, . . . , αm2,k), 1 ≤ k ≤ n,
βj,k = (β1,j,k, β2,j,k, . . . , βm2,j,k), 1 ≤ j < k ≤ n,
γj,k = (γ1,j,k, γ2,j,k, . . . , γm2,j,k), 1 ≤ j < k ≤ n, and

a = (A(v1, vout),A(v2, vout), . . . ,A(vm2 , vout)).

The claim tells us that A(vin, vout) ≡ 0 iff for every 1 ≤ j < k ≤ n,

〈αk, a〉 ≡ 〈βj,k, a〉 ≡ 〈γj,k, a〉 ≡ 0,

where 〈·, ·〉 is the inner product form. Consider V = span{αk, βj,k, γj,k}j,k. Stated differently,
A(vin, vout) ≡ 0 iff a ⊥ V . Let d = dim(V) ≤ m2 and u1, . . . , ud be a basis for V . Note that as
we work in the white-box model, we can easily compute αk, βj,k, γj,k and hence we can efficiently
compute a basis of V . Denote uj = (uj,1, ..., uj,m2). For i ∈ [m2], define the linear form

`i(y1, . . . , yd) =
∑
j∈[d]

uj,iyj .

We thus have

Â def
=

∑
i∈[m2]

`i · A(vi, vout) =
∑
j∈[d]

yj
∑
i∈[m2]

uj,i · A(vi, vout) =
∑
j∈[d]

yj〈uj , a〉,

which implies
Â ≡ 0 ⇔ ∀ j ∈ [d] 〈uj , a〉 ≡ 0 ⇔ A ≡ 0.

Notice that Â can be computed by an ABP with d−1 levels in the following manner. Remove all the
vertices in level 1 from A. For every i ∈ [m2], connect vi to the source with an edge labelled by `i. We
now give a bound on the number of operations needed to construct Â, given A. With O(m1 ·m2 ·n2)
operations we can compute the vectors {αk, βj,k, γj,k}j,k. We can compute the `i’s with O((n2 +m2) ·
n2 · m2) operations, using Gaussian elimination. Thus, using O

(
m2 · n4 +m2

2 · n2 +m1 ·m2 · n2
)

operations we can transform A to Â.

Theorem 4.13 ([RS05]). Let A be an ABP of size s, then we can deterministically verify whether
A ≡ 0 in time O(s5 + s · n4).

Proof. The size of A is s = m1 + ... + md, where mi is the size of level i. By the above procedure,
we can reduce A to an ABP with two levels in d steps. After the i’th step, we have an ABP in at
most n+mi+1 variables (where md = 1). The reduction, therefore, runs in time

O

(
d−1∑
i=1

mi+1 · (mi + n)4 + (mi+1)2 · (mi + n)2 +mi ·mi+1 · (mi + n)2

)
= O

(
s5 + s · n4

)
.

As we can efficiently verify whether an ABP with two levels is identically zero or not, the result
follows.

68

This algorithm runs in polynomial time but it works only in the white-box setting. It is thus
an interesting question to find a black-box algorithm for the problem. Any black-box algorithm will
need to make assignments from a noncommutative domain, as otherwise it will make a mistake, e.g.,
on the polynomial xy − yx which is nonzero when x and y do not commute. In the next section we
present randomized noncommutative PIT algorithms.

4.5.1 Randomized Noncommutative PIT Algorithms

The first such algorithm was given by Bogdanov and Wee [BW05], that presented a noncommutative
analog of the Schwartz-Zippel algorithm. A nontrivial extension is required as, e.g., the polynomial
xy − yx is nonzero in the noncommutative world but vanishes whenever the inputs come from a
commutative domain.

Theorem 4.14 ([BW05]). There exists a black-box, randomized identity testing algorithm for the
class of noncommutative degree d n-variate polynomials that uses O(d log n log(d log n/ε)) random
bits and succeeds with probability 1− ε.

The algorithm is based on a classical theorem of Amitsur and Levitzki saying that over any field
F the matrix algebra Fk×k does not satisfy any polynomial identity of degree less than 2k [AL50]. In
other words, for every nonzero polynomial g(x1, . . . , xn) of degree smaller than 2k, there exist k × k
matrices A1, . . . , An such that g(A1, . . . , An) is nonzero. For example, for xy − yx, we have[

0 1
1 0

] [
0 −1
1 0

]
−
[

0 −1
1 0

] [
0 1
1 0

]
=

[
1 0
0 −1

]
−
[
−1 0
0 1

]
=

[
2 0
0 2

]
.

The high-level idea behind the Bogdanov-Wee algorithm is the following. Let f(x1, . . . , xn) be
a noncommutative polynomial of degree r. Evaluate f on random r × r matrices over F (we need
to assume that F is large enough, otherwise we pick matrices over an extension field). After this
substitution, f computes an r× r matrix in which each entry is a degree r polynomial in the entries
of the n matrices. If f is not a polynomial identity for Fr×r, then some entry of f computes a nonzero
polynomial of degree at most r in the entries of the matrices that we picked. In particular, if we
pick the matrices at random then by the usual commutative version of the Schwartz-Zippel lemma
f will compute a nonzero matrix with high probability. Furthermore, we may obtain a lower bound
for this probability via the commutative Schwartz-Zippel lemma. While this is the main idea behind
the algorithm, Bogdanov and Wee use another trick in order to optimize parameters. Roughly, they
pick the random matrices from a linear subspace where some entries of the matrices are fixed to zero,
and the remaining entries are chosen randomly from some subset T ⊆ F.

In Ref. [AM08] a randomized algorithm based on the so-called isolation lemma and that uses
ideas from automata theory was given. To explain their approach, we first recall some standard
automata theory (see, e.g., Ref. [HMU00]). Fix a deterministic finite automaton A = (Q,Σ, δ, q0, qf)
that takes inputs from Σ∗, where Q is the set of states, Σ is the alphabet, δ : Q × Σ → Q is
the transition function, and q0 and qf are the initial and final states, respectively. For each letter
w ∈ Σ, let δw : Q → Q be defined by δw(q) = δ(q, w). Define the transition matrix Mw to be the
|Q| × |Q| matrix given by Mw(q, q′) = 1 if δw(q) = q′ and Mw(q, q′) = 0 otherwise. For a word
w̄ = w1w2 . . . wk ∈ Σ∗, we define Mw̄ = Mw1 · · ·Mwk , and if w̄ is the empty string then Mw̄ is

69

the identity matrix. Let δw̄ denote the natural extension of the transition function to w̄ (if w̄ is the
empty string then δw̄ is simply the identity function). As before, we have Mw̄(q, q′) = 1 iff δw̄(q) = q′.
Specifically, Mw̄(q0, qf) = 1 iff w̄ is accepted by the automaton A.

The authors of Ref. [AM08] use automata to get a randomized PIT algorithm in the following
way. Let Φ be the noncommutative circuit that we wish to test. Let A = (Q,Σ, δ, q0, qf) be a finite
automaton over the alphabet Σ = {x1, . . . , xn} and define the matrices Mxi ∈ F|Q|×|Q| as before.
Consider the matrix Mout obtained by evaluating Φ on the input (Mx1 , . . . ,Mxn). The crucial
observation is that Mout is determined completely by the polynomial f computed by Φ, and the
structure of Φ itself is otherwise irrelevant. In particular, Mout is always zero when f ≡ 0. Consider
what happens when Φ computes a single monomial, i.e., f(x1, . . . , xn) = c · xj1 · · ·xjr , where c is
a field element. In this case, the output matrix Mout is the matrix c ·Mxj1

· · ·Mxjr = c ·Mw̄, for
w̄ = xj1 · · ·xjr . Specifically, Mout(q0, qf) is zero when A rejects w̄, and equals c when A accepts w̄.
In general, suppose that Φ computes the polynomial f =

∑
i∈[t] ci ·mi, where mi =

∏ri
k=1 xik . Let w̄i

denote the string representing the monomial mi. Finally, let S(f,A) = {i ∈ [t] : A accepts w̄i}.
It is not hard to see that Mout(q0, qf) =

∑
i∈S(f,A) ci. Thus, when evaluating Φ on the input

(Mx1 , . . . ,Mxn) we obtain a matrix that reflects how the automaton acts on f , when viewed as the
set of strings corresponding to its monomials. In particular, if A is an automaton that accepts exactly
one string that corresponds to a monomial of f , then Mout(q0, qf) is the coefficient of that monomial
in f . In order to use this observation we recall the isolation lemma of Mulmuley et al. [MVV87].

Lemma 4.4. Let U be a universe of size u and F be any family of subsets of U . Let W : U → [2u]
denote a weight assignment function to elements of U . Then, when W is picked uniformly at random,
the probability that there exists a unique minimum-weight set in F is at least 1/2 (the weight of a
set is the sum of the weights of its elements).

To obtain a “noncommutative Schwartz-Zippel algorithm” we do the following. Let f be a
noncommutative polynomial of degree r. Consider the universe Ut = [t] × [n] with t ∈ [r]. We
identify each monomial m = xi1 · · ·xit with the set Sm = {(1, i1), (2, i2), . . . , (t, it)} ⊆ Ut. Consider
the family F of all sets Sm such that the monomial m has a nonzero coefficient in f . The isolation
lemma tells us that if we assign random weights from [2tn] to the elements of Ut then with probability
at least 1/2 there is a unique minimum-weight set in F . In Ref. [AM08] Arvind and Mukhopadhyay
construct a family of small automata {Aw,t : w ∈ [2nr], t ∈ [r]} such that the automaton Aw,t

accepts precisely all the strings m of length t such that the weight of Sm is w. Thus, the automaton
corresponding to the minimum weight accepts only one string (monomial). Now, for each automaton
Aw,t, plug the n matrices that it defines to f as inputs in the way described above. If the output
matrix of some automaton is nonzero, then the algorithm declares f 6≡ 0, otherwise it declares
f ≡ 0. By the isolation lemma, with probability at least 1/2 the algorithm is correct. Repeating
this procedure several times, with “fresh” weight function at each run, we can reduce the error as
we like.

We end this section by stating two open questions.

Open Problem 22. Derandomize black-box PIT for noncommutative arithmetic formulas.

Another interesting problem is to derandomize PIT for noncommutative circuits, even in the
white-box setting. Currently no sub-exponential time deterministic algorithm is known. We note that

70

similarly to the general PIT question, derandomizing PIT for noncommutative circuits is equivalent
to proving lower bounds in the sense of [KI04]. Specifically, Arvind et al. [AMS08] proved the
following.

Theorem 4.15 ([AMS08]). If PIT for noncommutative circuits can be done in deterministic sub-
exponential time, then either NEXP 6⊆ P/poly or the noncommutative permanent does not have
polynomial-size noncommutative circuits.

The proof is essentially the same as the proof of Theorem 4.5 and is left to the readers. Thus,
derandomizing PIT of noncommutative circuits can be viewed as a first step towards proving super-
polynomial lower bound for noncommutative circuits (recall Open Problem 10).

Open Problem 23. Derandomize PIT for noncommutative arithmetic circuits.

Finally, we note that while for general circuits Kabanets and Impagliazzo showed that lower
bounds imply PIT algorithm (Theorem 4.7), no such result is known for noncommutative circuits.

Open Problem 24. Obtain an analog of Theorem 4.7 for noncommutative circuits. I.e., show that
an exponential lower bound for noncommutative circuits computing a multilinear polynomial, implies
a sub-exponential time deterministic black-box PIT algorithm for noncommutative circuits.

4.6 Depth-3 Circuits

Theorem 4.9 shows that black-box derandomization of ΣΠΣΠ circuits is almost equivalent to black-
box derandomization of PIT for general circuits. Currently only the case of depth-2 is solved, as we
saw in Section 4.4. The next step is, therefore, depth-3 circuits. In the last few years this model
attracted a lot of research but still the question of derandomizing PIT for depth-3 circuits remains
open. We note that for depth-3 circuits the interesting case is ΣΠΣ circuits and not ΠΣΠ circuits,
as the latter follows by the depth-2 case.

Open Problem 25. Give a deterministic sub-exponential time PIT algorithm for ΣΠΣ circuits.

As the general question is still open, research has focused on restricted depth-3 circuits, in hope of
gaining a better understanding of the general case. Klivans and Spielman [KS01] raised the problem
of giving a deterministic white-box PIT algorithm for ΣΠΣ circuits, even when the top fan-in is
three. Namely, when there are only three multiplication gates. This question was first solved in
Ref. [DS06] who gave a white-box quasi-polynomial time deterministic PIT algorithm for ΣΠΣ(k)
circuits (depth-3 circuits with top fan-in k). This result was significantly improved by Kayal and
Saxena [KS07] who gave an nO(k) time white-box PIT algorithm for ΣΠΣ(k) circuits. Consequently,
Arvind and Mukhopadhyay [AM07] gave a somewhat simpler algorithm of the same running time
for the problem. In Ref. [KS08] it was shown how to generalize the approach of [DS06] to the black-
box setting, thus giving the first quasi-polynomial time black-box algorithm for the problem. This
result was later improved by Saxena and Seshadhri [SS09] who gave a better quasi-polynomial time
algorithm over finite fields, and by Kayal and Saraf [KS09b] who gave a polynomial time algorithm,

of running time nk
O(k)

, over Q and R. Very recently, Saxena and Seshadhri [SS10] obtained improved
algorithms for both finite fields, where the algorithm runs in quasi-polynomial time, and for Q and

71

R, where it runs in time nO(k2). The algorithms of [SS09, KS09b, SS10] are the same as the original
algorithm of Karnin and Shpilka [KS08], the difference is that they improve the parameters in the
main lemma of Dvir and Shpilka [DS06], on which the analysis of Karnin and Shpilka [KS08] relies.

4.6.1 White-Box Algorithms

The following theorem of Kayal and Saxena [KS07] gives the best white-box algorithm for ΣΠΣ(k)
circuits.

Theorem 4.16 ([KS07]). There is a deterministic poly(n, rk)-time white-box PIT algorithm for
ΣΠΣ(k) circuits of degree r.

We shall present the ideas behind the algorithm of Kayal and Saxena without giving the full
details. We start by a simplified version of the algorithm. Let Φ be a given ΣΠΣ(k) circuit of degree
r. Assume that we can find (r + 1) co-prime linear functions `1, . . . , `r+1 that appear in Φ. In this
case Φ ≡ 0 mod

∏
i∈[r+1] `i iff Φ ≡ 0, as deg(Φ) < deg(

∏
i∈[r+1] `i). In other words, Φ ≡ 0 iff for

every `i it holds that Φ|`i=0 ≡ 0. (imagine that `i = xi and in this case Φ|`i=0 is the circuit obtained
by substituting xi = 0. The general case is handled similarly.) Since each `i appears in Φ, the circuit
Φ|`i=0 is a ΣΠΣ(k − 1) circuit. This gives rise to an inductive argument: find “enough” co-prime
linear functions that appear in the circuit and check all the restriction of the circuit to the linear
functions. The base case for the induction is k = 2 which is trivial to check, as a ΣΠΣ(2) circuit is
zero iff its two multiplication gates have the same factorization (with a different sign). Thus, if we
could find such a set of linear functions, we would be done.

In the general case, however, we may not be able to find such a set. For example, this will
occur if all linear functions appear with high multiplicity. Kayal and Saxena circumvent this dif-
ficulty by working modulo powers of linear functions and performing computations in the ring
F[x1, . . . , xn]/〈xe11 , . . . , x

er
r 〉. To better understand their approach, let us first consider the case

k = 3. It is not difficult to see (e.g. using a greedy argument) that if the multiplication gates
are not identical, and no linear function appears in all three gates, then we can find co-prime powers
of linear functions `e11 , . . . , `

em
m such that each `eii divides exactly one of the multiplication gates and

e1 + · · · + em > r. The algorithm now checks whether Φ ≡ 0 mod `eii for every i. Let us consider
what happens when we set `1 = 0. For simplicity, assume without loss of generality that `1 = x1.
The circuit Φ mod xe11 is a ΣΠΣ(2) circuit in the ring F[x1, . . . , xn]/〈xe11 〉. We now repeat the same
procedure for this circuit, that is, find a set of co-prime powers of linear functions (that are also co-
prime to x1), each dividing one of the two remaining gates, such that their product is of high degree.
By doing so we reduced PIT for ΣΠΣ(3) circuits to O(r2) instances of the problem of verifying that
a given multiplication gate is zero in the ring F[x1, . . . , xn]/〈xe11 , x

e2
2 〉. This can be done by observing

that a product of linear functions is zero modulo 〈xe11 , x
e2
2 〉 iff the product of all the factors that only

involve x1, x2 is zero in this ring, which can be verified in time poly(n, e1 · e2).

To extend the proof to higher values of k, one has to make sure that the Chinese Remainder
Theorem also holds for rings of the form F[x1, . . . , xn]/〈xe11 , . . . , x

er
r 〉, which is what Kayal and Sax-

ena [KS07] did. This enables an inductive argument since the same argument as above can be used
to reduce PIT of ΣΠΣ(k) circuits to at most r+ 1 instances of PIT of ΣΠΣ(k− 1) circuits over rings
“similar” to F[x1, . . . , xn]/〈xe11 〉. This description also shows that the running time is poly(n, rk).

72

4.6.2 Black-Box Algorithms

We now explain the main ideas behind [DS06, KS08, SS09, KS09b, SS10]. All these works are based
on the following structural theorem from [DS06]. The improvements of [SS09, KS09b, SS10] are
based on improving the parameters in the theorem. Before stating the theorem we define the notions
of simple and minimal circuits.

Definition 4.1. A ΣΠΣ(k) circuit Φ =
∑

i∈[k] Ψi, where each Ψi is a ΠΣ circuit, is minimal if there
is no nonempty set I ([k] such that

∑
i∈I Ψi ≡ 0. The circuit is simple if no linear function is a

factor of all the multiplication gates, that is, if gcd(Ψ1, . . . ,Ψk) = 1.

Clearly, one can create an identically zero ΣΠΣ(k) circuit by adding together several smaller
depth-3 circuits that are identically zero, or by multiplying a zero ΣΠΣ(k) circuit by some linear
function. The following theorem of Dvir and Shpilka [DS06] shows that if an identically zero circuit
was not constructed in this way, i.e., the circuit is simple and minimal, then it depends on a few
linear functions. To state the theorem we need the following definitions.

Definition 4.2. Let Φ =
∑

i∈[k] Ψi be a ΣΠΣ(k) circuit. Denote Ψi =
∏
j∈[ri]

`i,j, where each
`i,j is a linear function. The degree of Φ is deg(Φ) = maxi∈[k] ri. The rank of Φ is rank(Φ) =
dim (span {`i,j : i ∈ [k] , j ∈ [ri]}).

The theorem below is the structural theorem of Dvir and Shpilka [DS06] with the improved
bounds of Saxena and Seshadhri [SS10].

Theorem 4.17 ([DS06, SS09, KS09b, SS10]). For every field F, there exists a function R(k, r) =
RF(k, r) such that if Φ is a simple and minimal ΣΠΣ(k) circuit of degree r over F that computes the
zero polynomial, then rank(Φ) ≤ R(k, r). If F is a finite field then R(k, r) = O(k2 log r). If F = R
or Q then R(k, r) = k2.

The interesting point about the theorem is that the upper bound on the rank does not depend
on n. Roughly, when a ΣΠΣ circuit is simple, minimal and computes the zero polynomial, it cannot
involve too many linearly independent linear functions. This property will play a major role in all
the black-box PIT algorithms as well as in the reconstruction algorithms given in Section 5.4. We
now sketch the proof of the theorem. The actual proof is quite long and is different for finite fields
and for R,Q. We only explain the case k = 3 over finite fields and over the reals.

Sketch for k = 3. Let Φ = Ψ1 + Ψ2 + Ψ3 be a circuit computing the zero polynomial with mul-
tiplication gates Ψ1,Ψ2 and Ψ3. Assume without loss of generality that deg(Ψ1) = deg(Ψ2) =
deg(Ψ3) = r and that all the linear forms in Φ are homogeneous. Indeed, we can replace
Ψi =

∏
j∈[ri]

(ai,j,0 +
∑

k∈[n] ai,j,kxk) by Ψ′i = yr
′
i
∏
j∈[ri]

(ai,j,0y +
∑

k∈[n] ai,j,kxk) where y is a new

variables and r′i is such that deg(Ψ′i) = r. Denote R = rank(Φ). Then, there exist R linearly in-
dependent linear functions `1, . . . , `R in Φ. By applying an invertible linear transformation, we can
assume without loss of generality that `i = xi for every i ∈ [R]. Consider the circuit Φ|xi=0 for some
i ∈ [R]. Clearly Φ|xi=0 ≡ 0. As `i = xi appears in Φ, some product gate becomes zero in Φ|xi=0.
Observe that neither of the other two product gates will become zero after setting xi = 0. Indeed,
if xi divides both Ψ1 and Ψ2 then, as Ψ3 = −Ψ1 − Ψ2, we get that xi divides Ψ3 as well. But,
since Φ is simple this is a contradiction. We thus have that Φ|xi=0 is a zero ΣΠΣ(2) circuit. This

73

is possible only if the two product gates multiply the same linear functions, up to multiplication by
constants. The variable xi thus induces a partial matching of the linear functions in the circuit. This
matching contains r pairs of linear functions such that for every pair (`, `′) in the matching, the two
linear functions ` and `′ belong to two different multiplication gates and `|xi=0 = α · `′|xi=0 for some
nonzero constant α ∈ F. Denote with Mi the matching induced by xi. The next claim gives more
information about these pairs.

Claim 4.2. For every (`, `′) in Mi it holds that xi ∈ span{`, `′}.

Proof. Denote ` =
∑

j∈[n] ajxj and `′ =
∑

j∈[n] bjxj . Since `|xi=0 = α ·`′|xi=0, it holds that aj = α ·bj
for every j 6= i in [n]. Since the two linear forms `, `′ are linearly independent, as Φ is simple, it must
hold that ai 6= α · bi. Hence, xi = (`− α · `′)/(ai − α · bi).

Claim 4.2 tells us that every pair (`, `′) in Mi spans xi. We also have that all the matchings
{Mi}i∈[R] are contained in a set of at most 3r linear functions, and that each matching contains r
pairs. Standard arguments from information theory (e.g., Theorem 1.2 of Dvir and Shpilka [DS06]
concerning locally decodable codes) now show that, regardless of the field, 3r ≥ exp(R). In other
words, R = O(log r). This proved the claimed result for finite fields.

The argument above works for any field, but when F = R,Q one can get a better bound. To
obtain the improved bound we use a slightly different point of view, as conjectured in Ref. [DS06]
and first proved in Ref. [KS09b]. Given a linear function `(x) =

∑
i∈[n] ai · xi we map it to the

line ϕ(`) in Rn passing through a = (a1, . . . , an) and the origin. Given a simple ΣΠΣ(3) circuit
computing the zero polynomial, consider the three multi-sets of lines corresponding to each of the
three multiplication gates. Let H ⊂ Rn be a hyperplane such that each of the lines defined above
intersects H in exactly one point (a random H has this property). For a linear function ` from the
circuit, denote this intersection point by h(`) = ϕ(`) ∩ H. This gives a multi-set of points in H.
Color all these points by three colors, according to the different multiplication gate that they came
from (every point receives exactly one color, as Φ is simple). As the circuit is zero, similarly to the
proof of Claim 4.2, for every ` and `′ that belong to two different multiplication gates, there is some
`′′ in the third gate such that `′′ ∈ span(`, `′). This implies that the point h(`′′) belongs to the line
passing through h(`) and h(`′). The three colored sets thus have the property that every line that
contains points from two sets must also contain a point from the third set. By [EK66] this implies
that the points belong to a three-dimensional subspace of Rn. It follows that, originally, the linear
function in the circuit span a vector space of dimension at most four.

We note that the result of Edelstein and Kelly [EK66] is a colored version of the famous Sylvester-
Gallai theorem, that shows that if we have a collection of points in the plane such that any line passing
through two points contains a third point then the points must be collinear.

The proof above only holds for the case k = 3. The extension to larger values of k is by induction
[DS06, SS09, KS09b, SS10]. We do not give further details of the proofs, which are based on the
arguments sketched above.

Theorem 4.17 enables us to explain the black-box algorithm of Karnin and Shpilka [KS08].

Theorem 4.18 ([KS08]). There is a deterministic nO(R(k,r))-time black-box PIT algorithm for
ΣΠΣ(k) circuits of degree r.

74

Before giving the proof we need the following definition. Let Φ =
∑

i∈[k] Ψi be a ΣΠΣ(k) circuit.
Let g = gcd(Ψ1, . . . ,Ψk) be the greatest common divisor of all the multiplication gates. Clearly, g is
a product of linear functions. The simplification of Φ is

sim(Φ) = Φ/g.

In words, it is the circuit obtained by deleting g from each Ψi. Specifically, sim(Φ) is a simple
ΣΠΣ(k) circuit.

Sketch. Denote R = R(k, r). The first step is to construct a set of m = poly(n) linear transformations
T = {Ti : F2R → Fn}i∈[m] such that for every vector space V , of linear functions from Fn to F, it
holds that all but a polynomially small fraction of the transformations T in T satisfy that

dim(V ◦ T) = min(dim(V), 2R),

where V ◦ T = span{` ◦ T : ` ∈ V } and ◦ is composition. Intuitively, for any such V , for most of the
transformations T in T , the linear functions in V remain as linearly independent as possible when
composed with T . Indeed, dim(V ◦T) is never larger than min(dim(V), 2R). Gabizon and Raz [GR08]
constructed a set T with the required properties (see Ref. [KS08] for the exact translation of the
construction of Gabizon and Raz [GR08] to our setting). We omit the details of this construction. For
a ΣΠΣ(k) circuit Φ and T ∈ T , denote by Φ◦T the ΣΠΣ(k) circuit in 2R variables y = (y1, . . . , y2R)
obtained by substituting x` by (Ty)` in Φ.

Assume the existence of such a set T . Let Φ =
∑

i∈[k] Ψi be a ΣΠΣ(k) circuit where Ψi =∏
j∈[ri]

`i,j . For every nonempty I ⊆ [k], let ΦI =
∑

i∈I ΨI . Define VI as the span of all linear

functions that occur in sim(ΦI). In addition, for every pair of linear functions `, `′ in sim(Φ),
consider the space W`,`′ = span{`, `′}. By the union bound, T contains a transformation T such that
for every VI and every such W`,`′ , it holds that dim(VI ◦T) = min(dim(VI), 2R) and dim(W`,`′ ◦T) =
min(dim(W`,`′), 2R). We now show that Φ ≡ 0 iff Φ◦T ≡ 0. As a first step we prove a claim showing
that if the rank of sim(ΦI ◦ T) is small then so is the rank of sim(ΦI).

Claim 4.3. For every nonempty I, we have rank(sim(ΦI ◦ T)) = min(rank(sim(ΦI)), 2R).

Proof. We first show that gcd(ΦI ◦ T) = (gcd(ΦI)) ◦ T . Namely, that no new linear functions
were added to the greatest common divisor. Assume towards a contradiction that gcd(ΦI ◦ T) 6=
(gcd(ΦI)) ◦ T . It must be the case that for some ` that occurs in ΦI but does not occur in gcd(ΦI),
the linear form `◦T belongs to all the product gates in ΦI ◦T . Therefore, there is some `′ in ΦI such
that ` and `′ are linearly independent but ` ◦ T and `′ ◦ T are linearly dependent. This contradicts
the choice of T , as dim(W`,`′ ◦ T) < 2. A similar argument shows that for every ` in gcd(ΦI) the
linear form ` ◦ T is nonzero. We thus get that sim(ΦI ◦ T) = sim(ΦI) ◦ T . The result now follows by
the choice of T , when considering VI ◦ T .

The following lemma is the final step before describing the algorithm.

Lemma 4.5. Φ ≡ 0 iff Φ ◦ T ≡ 0.

Proof. Assume that Φ ◦ T ≡ 0. Our goal is to show that in this case Φ ≡ 0 (the other direction is
trivial). Let [k] = I1 ∪ I2 ∪ . . .∪ Ic be the unique partition satisfying that each of the circuits ΦIj ◦T

75

is minimal and zero. Consider sim(ΦIj ◦ T). It is a simple, minimal and zero depth-3 circuit, and
so by Theorem 4.17 it holds that rank(sim(ΦIj ◦ T)) ≤ R. Claim 4.3 implies that rank(sim(ΦIj)) =
rank(sim(ΦIj) ◦ T). In other words, the rank of sim(ΦIj) does not change after composition with
T . Therefore, we also have that sim(ΦIj) ≡ 0, because T is “an invertible transformation” between
sim(ΦIj) and sim(ΦIj ◦ T). Specifically, Φ =

∑c
j=1 ΦIj ≡ 0.

To obtain a PIT algorithm, using such a “good” T , all that we have to do is to check whether
Φ ◦ T is identically zero. As Φ ◦ T is a degree r polynomial in 2R variables, by evaluating it on all
points in S2R, where S ⊆ F is a set of size r + 1, we can test whether it is zero or not. The PIT
algorithm, therefore, simply checks whether for all T ∈ T it holds that (Φ ◦ T)(S2R) = {0}, and
decides accordingly.

When the underlying ΣΠΣ(k) circuit is multilinear, namely, every product gate in the circuit
computes a multilinear polynomial, a stronger result can be proved. Indeed, notice that the rank
of a simple multilinear ΣΠΣ(k) circuit of degree r is at least r. This follows since all the linear
functions in any one of its multiplication gates have disjoint support and are therefore linearly
independent. Combining this with the bound R(k, r) ≤ O(k3 log r), we get that r ≤ O(k3 log r)
and hence r ≤ O(k3 log k) and R(k, r) = O(k3 log k). There is no clear way, however, to use this
improved rank bound for multilinear circuits, as in the proof of Theorem 4.18, since after composing
a multilinear circuit with a linear transformation we do not necessarily get a multilinear circuit.
In Ref. [KS08] a set of transformations T that has the required properties and that also keeps the
circuit multilinear, was constructed. Using this set T , [KS08] obtained an nexp(k2)-time black-box
PIT algorithm for multilinear ΣΠΣ(k) circuits. This result was later improved in Ref. [SV09] that
gave an nO(k)-time algorithm. Interestingly, the result of Ref. [SV09] does not rely on the rank
bound, but rather uses their PIT algorithm for sums of read-once formulas. We discuss this result
in Section 4.8 (Theorem 4.27). In spite of all the work the following question is still open.

Open Problem 26. Give a deterministic sub-exponential time PIT algorithm for multilinear ΣΠΣ
circuits.

In Section 4.5 we saw a white-box PIT algorithm for noncommutative formulas. A special type
of formulas that can be thought of as a model of noncommutative formulas, is the model of set-
multilinear depth-3 circuits [NW96]. Recall that a set-multilinear depth-3 circuit has the following
structure. The variables X are given as the union of r disjoint sets X = X1∪X2∪. . .∪Xr. The circuit
is a depth-3 circuit in the variables X with the additional property that every product gate has the
form Ψ =

∏r
i=1 `i(Xi), each `i is a linear form in Xi. In words, each product gate multiplies a linear

function in X1 with a linear function in X2 with a linear function in X3 and so forth. Clearly, every
monomial that appears in the polynomial computed by such a circuit contains exactly one variable
from each of the sets X1, . . . , Xr. It is not difficult to see that such circuits compute the same
polynomial also in a noncommutative world. Namely, they do not “use” commutativity during the
computation (as we always multiply a linear function in X1 with a linear function in X2 etc.). Stated
differently, depth-3 set-multilinear circuits form a restricted sub-model both of multilinear depth-3
circuits and of noncommutative formulas. As a first step towards understanding Open problem 26
one can try to solve the following problem, for which we already saw a white-box algorithm.

76

Open Problem 27. Give a deterministic sub-exponential time black-box PIT algorithm for set-
multilinear ΣΠΣ circuits.

Another sub-model of depth-3 circuits that was considered is the so-called model of diagonal
circuits, defined by Saxena [Sax08]. A diagonal depth-3 circuit is a depth-3 circuit in which the
number of different linear functions in each multiplication gate is bounded by some number k, and
the degree is polynomial. As a comparison, in ΣΠΣ(k) circuits we bound the top fan-in by k and here
we do not restrict the top fan-in but rather restrict the number of “different” children of each product
gate. Saxena showed how to adapt the noncommutative PIT algorithm of Raz and Shpilka [RS05]
to this scenario as well, thus obtaining a polynomial time white-box algorithm when k = O(1).
We explain his approach in Section 4.7.1 where we discuss a generalization of this model, namely,
diagonal depth-4 circuits.

4.7 Depth-4 Circuits

Theorem 4.9 tells us that derandomization of PIT of depth-4 circuits implies a quasi-polynomial time
derandomization of PIT of general arithmetic circuits. It is, therefore, not surprising that very little
is known even for restricted sub-models of depth-4 circuits. We briefly describe the sub-models for
which such algorithms are known and then present the algorithms. In what follows we say that a
polynomial is s-sparse if it has at most s monomials. Recall that a ΣΠΣΠ circuit of size s has the
form

Φ =
k∑
i=1

Ψi, where Ψi =

ri∏
j=1

Pi,j(x1, . . . , xn), and each Pi,j is an s-sparse polynomial. (4.3)

We consider two different restrictions of this model. The first, defined by Saxena, is that of diagonal
depth-4 circuits [Sax08]. In a nutshell, these are circuits in which the number of different Pi,j ’s in Ψi is
small (constant, mostly), and each Pi,j is a sum of univariate polynomials, Pi,j(x) =

∑n
m=1 gi,j,m(xm).

Saxena showed how to reduce the PIT problem of diagonal circuits to that of (a generalized version of)
noncommutative formulas, thus obtaining a polynomial time white-box PIT algorithm for a certain
range of parameters. We discuss this result in Section 4.7.1. Another model that was recently
considered is multilinear ΣΠΣΠ(k) circuits. In this model each of the k product gates Ψi computes a
multilinear polynomial. In other words, the Pi,j ’s are multilinear polynomials, and all the factors of
Ψi are variable disjoint. For this model, Karnin et al. [KMSV10] gave a quasi-polynomial time black-
box PIT algorithm (for k = polylog(n)). We describe this result in Section 4.7.2. In Ref. [AM07] a
white-box PIT algorithm for another restricted version of ΣΠΣΠ circuits was given. The circuits have
to be restricted in the following way. The top fan-in is constant, i.e. k = O(1), each Pi,j depends only
on c = O(1) variables, and each xm appears in at most ck different Pi,j ’s. Under these assumptions
(in fact, some more assumptions are needed), Arvind and Mukhopadhyay [AM07] gave a polynomial
time algorithm. However, we shall later see that the black-box algorithm of Karnin et al. [KMSV10]
can be adapted to work in this case as well. Very recently, Saraf and Volkovich [SV10a] were able
to obtain a polynomial time black-box algorithm for multilinear ΣΠΣΠ(k) circuits, for a constant k,
thus improving the result of [KMSV10]. We shortly discuss this result in Section 4.7.2.

77

4.7.1 Diagonal Circuits

A diagonal depth-4 circuit has the following form: Φ =
∑k

i=1 Ψi, each product gate Ψi is of the form
Ψi =

∏ri
j=1 P

ei,j
i,j , and each Pi,j is a sum of univariate polynomials, Pi,j =

∑n
m=1 gi,j,m(xm). Saxena

[Sax08] gave a white-box algorithm for such circuits using the approach described in Section 4.5.

Theorem 4.19 ([Sax08]). There is a deterministic algorithm that, given as input a diagonal depth-
4 circuit Φ as above, runs in time poly(nk,maxi∈[k] (1 + ei,1) · (1 + ei,2) · · · (1 + ei,ri)) and decides
correctly whether Φ ≡ 0.

Sketch. While the theorem holds over any field, we shall sketch the argument only for fields of
characteristic zero. The idea behind Saxena’s algorithm is to consider a “dual form” for each product
gate. This dual form will enable us to view the computation as done in a noncommutative world. For
a power series f(x1, . . . , xn, z, z1, . . . , zm), denote by [zeze11 · · · zemm]f the coefficient of zeze11 · · · zemm
in f , which is a polynomial in x1, . . . , xn. Consider a product gate Ψ =

∏r
j=1 P

ej
j with Pj =∑n

m=1 gj,m(xm). Let e = e1 + . . . + er. By considering the Taylor expansion of the exponential
function, exp(ξ) =

∑∞
`=0 ξ

`/`!, and its truncated Taylor expansion, Ee(ξ) = 1+ξ+ξ2/2!+ . . .+ξe/e!,
we observe that

(e1!e2! · · · er!)−1 ·Ψ = [zeze11 · · · z
er
r] exp(P1z1z) · · · exp(Przrz)

= [zeze11 · · · z
er
r]

n∏
m=1

exp

 r∑
j=1

gj,m(xm)zjz


= [zeze11 · · · z

er
r]

n∏
m=1

Ee

 r∑
j=1

gj,m(xm)zjz

 . (4.4)

Equation (4.4) is of polynomials of degree ne in z. We can therefore interpolate and obtain the
coefficient of ze. In other words, there exist α0, . . . , αne and β0, . . . , βne in F such that

[zeze11 · · · z
er
r]

n∏
m=1

Ee

 r∑
j=1

gj,m(xm)zjz

 =
ne∑
`=0

β` · [ze11 · · · z
er
r]

n∏
m=1

Ee

 r∑
j=1

gj,m(xm)zjα`

 .

Let I = 〈ze1+1
1 , . . . , zer+1

r 〉 be the ideal generated by ze1+1
1 , . . . , zer+1

r in the ring of polynomials. Set,
R = F[z1, . . . , zr]/I. It follows that for some field elements {β′`} we have that

Ψ · ze11 · · · z
er
r ≡

ne∑
`=0

β′`

n∏
m=1

Ee

 r∑
j=1

gj,m(xm)zjα`

 over R . (4.5)

Indeed, the coefficient of any monomial other than ze11 · · · zerr in the RHS of Equation (4.5) must
involve some zei+1

i and is thus zero in R. Equation (4.5) is called the dual form of a product gate
in diagonal circuits. Observe that it expresses the multiplication gate as a sum of ne multiplication
gates, where each is a product of univariate polynomials. This structure explains why the algorithm
for noncommutative formulas can be applied to this setting.

78

Now, given our circuit Φ =
∑k

i=1 Ψi with Ψi =
∏ri
j=1 P

ei,j
i,j , denote Ii = 〈zei,1+1

i,1 , . . . , z
ei,ri+1

i,ri
〉 and

Ri = F[zi,1, . . . , zi,ri]/Ii. The dual form of the product gates Ψi is

Ψi · z
ei,1
i,1 · · · z

ei,ri
i,ri
≡

nei∑
`=0

βi,`

n∏
m=1

Eei

 ri∑
j=1

gi,j,m(xm)zi,jα`

 over Ri .

We would like to work over a single ring R, and so we define the ideal I to be generated by the
following relations:

1. For every i ∈ [k] and j ∈ [ri], the relation z
ei,j+1
i,j = 0.

2. For every i 6= i′ in [k], j ∈ [ri] and j′ ∈ [ri′], the relation zi,j · zi′,j′ = 0.

3. For every i, i′ ∈ [k], the relation z
ei,1
i,1 · · · z

ei,ri
i,ri

= z
ei′,1
i′,1 · · · z

ei′,ri′
i′,ri′

.

Let R = F[z1,1, . . . , zk,rk]/I. A standard calculation reveals that R is an algebra of dimension∑k
i=1(1 + ei,1) · · · (1 + ei,ri)− 2(k − 1). By the discussion above, we get that over R

Φ · ze1,11,1 · · · z
e1,r1
1,r1

=

k∑
i=1

Ψi · z
ei,1
i,1 · · · z

ei,ri
i,ri

=

k∑
i=1

nei∑
`=0

βi,`

n∏
m=1

Eei

 ri∑
j=1

gi,j,m(xm)zi,jα`

 over R . (4.6)

As Equation (4.6) can be represented as
∑k

i=1

∑nei
`=0 fi,`,1(x1) · · · fi,`,n(xn), we can view it as a non-

commutative polynomial in x1, . . . , xn. In Section 4.5 we described the PIT algorithm of Raz and
Shpilka [RS05] for noncommutative formulas, that basically runs in time polynomial in the size of
the formula, which in our case can be thought of as nk · maxi ei. It turns out that this algorithm
can be extended to work over the algebra R at the cost multiplying the running time by a poly-
nomial in dim(R). This gives a PIT algorithm for diagonal depth-4 circuits with running time
poly(nk,maxi(1 + ei,1) · · · (1 + ei,ri)). In particular, if ri = O(1) then the algorithm runs in time
polynomial in the size of the circuit.

Theorem 4.19 tells us that there is a model of ΣΠΣΠ circuits with unbounded top fan-in for
which a polynomial time white-box PIT algorithm is known. This comes at the cost of bounding
the number of different factors that each multiplication gate has and the requirement that each
Pi,j is the sum of univariate polynomials. Besides diagonal depth-4 circuits, only noncommutative
depth-4 formulas give a sub-model of depth-4 circuits with unbounded top fan-in, for which efficient
(white-box) PIT algorithms are known.

4.7.2 Multilinear ΣΠΣΠ(k) Circuits

We now describe the idea and proof of the PIT algorithm of Karnin et al. [KMSV10] for multilinear
ΣΠΣΠ(k) circuits.

79

Theorem 4.20 ([KMSV10]). There is an algorithm that in time nO(k6 log(k) log2 s) constructs a hitting
set for multilinear ΣΠΣΠ(k) circuits of size s in n variables.

To explain the proof we first recall that a multilinear ΣΠΣΠ circuit Φ has the following structure.
Each product gate is of the form Ψi =

∏ri
j=1 Pi,j and for every j 6= j′ in [ri], the polynomials Pi,j , Pi,j′

are defined on disjoint sets of variables. The PIT algorithm of Karnin et al. [KMSV10] builds on a
reduction from identity testing of multilinear ΣΠΣΠ(k) circuits to identity testing of a special type
of such circuits, circuits for which for every i, j it holds that |var(Pi,j)| ≤ |var(Φ)|/c, where var(P)
is the set of variables that appear in P and c is some parameter. We call such circuits c-compressed
circuits. The main ingredient in the proof is the following lemma on the structure of multilinear
ΣΠΣΠ(k) circuits. For a set of (indices of) variables I ⊆ [n], let m(I) =

∏
i∈I xi be the product of

the variables in I.

Theorem 4.21. Let P be a nonzero n-variate polynomial computable by a multilinear ΣΠΣΠ(k)
circuit of size s. Let c > 0 be a parameter. Then there exists I ⊆ [n] of size |I| ≤ 2 log n · log s ·kc for
which the following holds: Let P =

∑
T⊆I m(T)PT be the expansion of P with respect to the variables

in I. In particular, each PT is a polynomial in the variables (whose indices are) in [n] \ I. There
exists a set T ⊆ I such that: (1) PT is a nonzero polynomial, and (2) PT = Q · H, where Q is a
product of s-sparse polynomials and H is computable by a simple7, c-compressed ΣΠΣΠ(k) circuit of
size s.

We first give the proof of the theorem and then explain how it can be used to derive a PIT
algorithm.

Proof. Given a product gate Ψi, write Ψi = Ai ·Bi where Ai is the product of all the Pi,j ’s such that
|var(Pi,j)| > var(P)/2c and Bi is the product of the other factors. As Ψi is multilinear, the number
of factors in Ai is at most 2c. Therefore, since Pi,j is s-sparse, we get that Ai is s2c-sparse. We would
like to somehow “remove” the Ai part, as the next lemma hints at.

Lemma 4.6. Let f ∈ F[x1, . . . , xn] be a multilinear s-sparse polynomial. Then, there exists a set of
variables I ⊆ var(f) of size |I| ≤ log s such that when writing f =

∑
T⊆I m(T)fT , it holds that for

some T ⊆ I, the polynomial fT is a monomial.

Proof. We prove the lemma by induction on the size of var(f). Consider a variable x ∈ var(f) that
does not divide f (if all variables divide f then f is a monomial and we are done). Write f = xg+h.
There is a polynomial f ′ ∈ {g, h} that is s/2-sparse. Induction, therefore, implies that a set of size
at most log(s/2) = log s− 1 with the required property, with respect to f ′, exists. Add x to this set
and observe that it satisfies the claim.

The lemma tells us that there is some set of variables I and T ⊂ I such that after taking a partial
derivative with respect to the variables in T and setting the variables in I \ T to zero, f becomes
a (nonzero) monomial. With this in mind, let us continue the proof. Pick a set Ii for each Ai,
according to Lemma 4.6, and let I ′ =

⋃k
i=1 Ii. Specifically, |I ′| ≤ k · log s2c = 2ck log s. In addition,

there is some T ′ ⊆ I ′ such that after taking a partial derivative with respect to the variables in T ′

and setting the variables in I ′ \ T ′ to zero, all the Ψi’s become products of s-sparse polynomials,

7The definition of simple here is the same: a ΣΠΣΠ(k) circuit Φ =
∑k
i=1 Ψi is simple if gcd(Ψ1,Ψ2, . . . ,Ψk) = 1.

80

each of which depends on at most |var(P)|/2c variables, and the resulting polynomial is still nonzero
(this can be seen, e.g., by considering the expansion of P w.r.t. I ′). It seems that we are done,
but this is not quite the case. Denote by P̃1 the polynomial ∂T ′(P)|xI′\T ′=0, where ∂T ′(P) is the

partial derivative of P with respect to all variables in T ′ and |xI′\T ′=0 means substituting xi = 0 for

all i ∈ I ′ \ T ′. The circuit computing P̃1 is not necessarily simple and so we let Q1 be the greatest
common divisor of all the product gates of ∂T ′(P)|xI′\T ′=0 and set P1 = P̃1/Q1. Clearly the circuit

for P1 is simple. Now, it may be the case that |var(P1)| < |var(P)|/2 and so P1 is not c-compressed.
If this is indeed the case then we simply repeat the process for P1. This can happen at most log n
times as the number of variables shrinks by a factor of at least two after each “unsuccessful” round.
Now, we are basically done. We obtained a set I of size at most 2 log n · log s · kc (which is the union
of all sets I ′ constructed in the different stages) and a set T ⊂ I so that the following holds. Let Q be
the greatest common divisor of all the product gates of ∂T (P)|xI\T=0. Denote H = ∂T (P)|xI\T=0/Q.
Then H is both c-compressed and simple as claimed.

Theorem 4.21 suggests the following algorithmic approach. Start by constructing a hitting set for
c-compressed circuits. Then, “guess” the set I guaranteed by the lemma (going over all possibilities
requires quasi-polynomial time). Assume that we have the “correct” I. Theorem 4.21 guarantees
that for some T ⊆ I, the coefficient8 of m(T) is a (nonzero) simple, c-compressed circuit. Therefore,
by trying each of the possible substitutions to the variables in [n] \ I, from the hitting set for c-
compressed circuits, we are guaranteed that for some substitution the resulting polynomial (in the I
variables) will be nonzero. Now, all that we have to do is to verify in a black-box manner whether a
multilinear polynomial in the |I| variables is nonzero and this can be done in time exp(|I|), which is
quasi-polynomial in n.

To conclude, our goal is to come up with a hitting set for c-compressed circuits. As we shall
soon see the hitting set for c-compressed ΣΠΣΠ(k) circuits is based on a generator for multilinear
ΣΠΣΠ(k − 1) circuits. Thus, our construction is recursive in nature.

The idea behind the PIT algorithm for c-compressed circuits is that such circuits “contain” a
nonzero multilinear depth-3 circuit. In fact, we prove that there is a small, but not too small, set
J of variables and an assignment, coming from a hitting set for sparse polynomials, to the variables
not in J so that after we make this assignment, we are left with a nonzero multilinear depth-3
circuit. To identify this “good” set of variables we use the following simple lemma (the proof is by
a straightforward greedy argument).

Lemma 4.7. Let P ∈ F[x1, . . . , xn] be computed by a ΣΠΣΠ(k) multilinear c-compressed circuit
Φ =

∑k
i=1

∏ri
j=1 Pi,j. Then there exists a set J ⊆ var(P) of size |J | ≥ c/k such that for every i, j we

have |J ∩ var(Pi,j)| ≤ 1.

Let J be the set guaranteed by the lemma. Think of c as small so we can actually “guess” J (we
can always make J smaller if it is too large). We shall try to fix the variables in [n] \ J so that the
resulting polynomial is computed by a nonzero multilinear ΣΠΣ(k) circuit. For this end we shall use
generators (see Section 4.1 for the definition) for sparse polynomials. We construct a generator for
c-compressed circuits by induction on the top fan-in, k. As mentioned above, the inductive argument

8The coefficient is in fact a product of sparse polynomials and a c-compressed circuit, but this does not change the
picture much.

81

will in fact assume that we already have a generator for multilinear ΣΠΣΠ(k − 1) circuits.

The base case of the induction is k = 1. It is easy to see that a generator for s-sparse polynomials
is also a generator for this case. Indeed, such a circuit is a product of s-sparse polynomials, and
Observation 4.1 guarantees that a generator for s-sparse polynomials is also a generator for a product
of s-sparse polynomials. By Theorem 4.12 and Lemma 4.1 we get that there exists a generator
S2s2 : Ft → Fn for the class of (2s2)-sparse polynomials with t = O(log s + log n). We now assume
that, for some parameter tk−1, we have a mapping Gk−1 : Ftk−1 → Fn that is a generator for sparse
polynomials as well as for ΣΠΣΠ(k − 1) circuits of size s (recall Observation 4.3), and show how
to construct a generator for c-compressed ΣΠΣΠ(k) circuits of size s. Denote by R(k) a number
larger than the rank of every minimal and simple multilinear ΣΠΣ(k) circuit that computes the zero
polynomial. The discussion following the proof of Theorem 4.18 tells us that R(k) = O(k3 log k). In
the following lemma we show that if c = kR(k) then when we restrict the variables in [n]\J to Gk−1,
we obtain a nonzero polynomial.

Lemma 4.8. Let k ≥ 2 and 0 6≡ P ∈ F[x1, . . . , xn] be computed by a simple multilinear (k · R(k))-
compressed ΣΠΣΠ(k) circuit of size s. In addition, let Gk−1 be a generator for multilinear ΣΠΣΠ(k−
1) circuits of size s as well as for (2s2)-sparse polynomials. Then, there is a set J ⊆ var(P) of size
R(k) so that (recall the notations in Section 4.1)

P ◦ Gvar(P)\J
k−1 6≡ 0 .

In words, after substituting the generator for the variables in [n] \ J , the resulting circuit remains
nonzero.

Proof. Let Φ =
∑k

i=1

∏ri
j=1 Pi,j be a simple multilinear (k · R(k))-compressed ΣΠΣΠ(k) circuit of

size s computing P . If Φ is not minimal, then P can be computed by a ΣΠΣΠ(k − 1) circuit of size
s and we are done. So we can assume without loss of generality that Φ is minimal. Let J be a set
promised by Lemma 4.7 and let J̄ = [n] \ J . We can further assume without loss of generality that
|J | = k ·R(k)/k = R(k), by removing arbitrary indices from J if required. Via a reduction to depth-3
circuits, we describe how to find an assignment for xJ̄ = (xj)j∈J̄ such that the restriction of P to that
assignment in nonzero. For every Pi,j in Φ, there is at most one variable x` so that x` ∈ J ∩Pi,j . Let
fi,j , gi,j be such that Pi,j = fi,jx` + gi,j (if no such x` exists then Pi,j is a constant). Note that two

such polynomials Pi1,j1 , Pi2,j2 have a common factor iff Qi1,j1,i2,j2
def
= fi1,j1 ·gi2,j2−fi2,j2 ·gi1,j1 ≡ 0. Let

Q be the set of all such nonzero Qi1,j1,i2,j2 ’s. The following lemma gives a sufficient condition that a
given assignment to xJ̄ results in a simple, minimal and nonzero depth-3 circuit. Let Φ1, . . . ,Φ2k−2

be the proper sub-circuits of Φ, excluding the empty circuit. They are all ΣΠΣΠ(k − 1) circuits of
size at most s.

Lemma 4.9. Let

Φ̂ =

2k−2∏
i=1

Φi ·
∏
Q∈Q

Q.

Let a ∈ Fn be such that Φ̂|xJ̄=aJ̄ 6≡ 0. Then Φ|xJ̄=aJ̄ is a simple and minimal multilinear ΣΠΣ(k)
circuit.

We will show that Φ|xJ̄=aJ̄ is nonzero after the proof of the lemma.

82

Proof. The circuit Φ|xJ̄=aJ̄ is minimal, since all of the sub-circuits of Φ are factors of Φ̂ and so if

one of them is zero then so is Φ̂|xJ̄=aJ̄ . Due to the same reason, no Pi,j is reduced to zero. By
the choice of J , the size of var(Pi,j) is at most one, which implies that Φ|xJ̄=aJ̄ is a ΣΠΣ(k) circuit
and it is clearly multilinear. We now show that Φ|xJ̄=aJ̄ is simple. For two polynomials f, g, write
f � g if f/g is not a field element. Let Pi1,j1 � Pi2,j2 in Φ. If var(Pi1,j1 |xJ̄=aJ̄) 6= var(Pi2,j2 |xJ̄=aJ̄)
then Pi1,j1 |xJ̄=aJ̄ � Pi2,j2 |xJ̄=aJ̄ . If, on the other hand, var(Pi1,j1 |xJ̄=aJ̄) = var(Pi2,j2 |xJ̄=aJ̄) then as
Qi1,j1,i2,j2 |xJ̄=aJ̄ 6≡ 0 it follows that Pi1,j1 |xJ̄=aJ̄ � Pi2,j2 |xJ̄=aJ̄ . As Φ is simple, we can thus conclude
that Φ|xJ̄=aJ̄ is simple.

We return to the proof of Lemma 4.8. The polynomial Φ̂ is a product of (2s2)-sparse polynomials
and ΣΠΣΠ(k − 1) circuits of size s each. Therefore, Φ̂|xJ̄=GJ̄k−1

6≡ 0. Lemma 4.9 thus implies that

there exists a ∈ Im (Gk−1) for which Φ|xJ̄=aJ̄ is a simple, minimal, and multilinear ΣΠΣ(k) circuit.
The circuit Φ|xJ̄=aJ̄ contains R(k) variables (the previous proof shows that all the variables in J
“survived”) and any linear function appearing in it contains only one variable. The rank of Φ|xJ̄=aJ̄

is hence R(k). By the definition of R(k), this implies that P ◦ GJ̄k−1 6≡ 0.

We now show how to construct Gk : Ftk → Fn using Gk−1. The construction uses the following
two statements that were proved above. First, Theorem 4.21 implies that it suffices for Gk to satisfy
the following property: for every subset I of the variables of size |I| ≤ 2 log n·log s·k ·(kR(k)), we can
leave the variables in I “alive” while applying a generator for both (kR(k))-compressed circuits and
for sparse polynomials to the rest of the variables. Indeed, the polynomial PT given by Theorem 4.21
is a product of a (kR(k))-compressed circuit with sparse polynomials. Second, Lemma 4.8 applied

to PT tells us that there is a set J ⊆ var(P) of size R(k) so that PT ◦ Gvar(P)\J
k−1 6≡ 0.

Concluding, the only property that we need Gk to have is that it can keep “alive” any subset
of the variables of size at most “|I|+ |J |” ≤ 2 log n · log s · k2R(k) + R(k) ≤ 3 log n · log s · k2R(k)
while applying Gk−1 to the rest of the variables. A generator that keeps variables “alive” was
constructed in Ref. [SV09] in the context of PIT of sums of read-once formulas. Specifically, Shpilka
and Volkovich [SV09] construct a map Gt from F2t to Fn so that its image contains all points a ∈ Fn
with at most t nonzero entries. In the next section we describe this construction. Joining all the
different ingredients of this section together we get Theorem 4.20.

Theorem 4.22. Let P ∈ F[x1, . . . , xn] be a nonzero polynomial computed by a multilinear ΣΠΣΠ(k)
circuit of size s. Let Gt is the generator that keeps variables “alive,” constructed in Section 4.7.2
below. Then for every t ≥ 3k3R(k) log(s) log(n) it holds that P (Gt(y, z) + S2s2(w)) 6≡ 0, where y, z, w
are vectors of new variables.

Proof. The proof is by induction on k. For k = 1, the polynomial P is a product of (2s2)-sparse
polynomials. By definition of S2s2 and Observations 4.1 and 4.4, we get that P (Gt + S2s2) 6≡ 0,
as claimed. Assume that k ≥ 2. Let I, J ⊆ [n] be the subsets guaranteed by Theorem 4.21 and
Lemma 4.8, respectively, and set U = I ∪ J . By the induction hypothesis, the mapping Gm(y, z) +
S2s2(w) with m =

⌈
3(k − 1)3R(k − 1) log(s) log(n)

⌉
is a generator for both ΣΠΣΠ(k−1) circuits and

for (2s2)-sparse polynomials. From Theorem 4.21 and Lemma 4.8 (see the discussion above) it follows

that there is a point a ∈ Im
(
G

[n]\U
m + S [n]\U

2s2

)
so that P (a) 6= 0. Since |U | ≤ 3k2R(k) log(s) log(n) ≤

83

t−m, Observation 4.4 below implies

Im
(
G[n]\U
m + S [n]\U

2s2

)
⊆ Im

(
G[n]\U
m + S2s2

)
⊆ Im (Gt + S2s2)

and thus a ∈ Im (Gt + S2s2), as claimed.

Theorem 4.22 shows the existence of a generator for ΣΠΣΠ(k) circuits. To conclude the proof of
Theorem 4.20 we observe the following facts: First, the degree of every coordinate of Gt and of S2s2

is n− 1. Furthermore, the generator Gt(y, z) + S2s2(w) has “seed-length” O(k3R(k) log(s) log(n) +
log(s)+log(n)). Therefore, Lemma 4.1 implies that there is a hitting set of size nO(k3R(k) log(s) log(n)) =

nO(k6 log k log2(s)) as claimed.

Very recently, Saraf and Volkovich improved the result of Theorem 4.20 [SV10a]. In fact, they

gave a black-box algorithm of running time nÕ(k2). The main idea behind their proof is an extension
of Theorem 4.17 to the case of multilinear ΣΠΣΠ(k) circuits. Specifically, note that if a depth-3
multilinear multiplication gate has rank R, then, because of multilinearity, it computes an nR-sparse
polynomial. By replacing “rank” with “sparsity” Saraf and Volkovich [SV10a] were able to show
that if a simple and minimal multilinear ΣΠΣΠ(k) circuit computes the zero polynomial then any of
its multiplication gates computes a sparse polynomial. Using ideas similar to those of Klivans and
Spielman [KS01] (see the proof of Theorem 4.12) they managed to gradually reduce the sparsity of
the output polynomial. Applying their structural theorem they were able to prove that the output
polynomial does not become zero in this process, thus obtaining an efficient way of transforming a
nonzero polynomial computed by a ΣΠΣΠ(k) circuit to a sparse polynomial. When the polynomial
is sparse enough they simply run the [KS01] PIT test for sparse polynomial.

Theorem 4.23 ([SV10a]). There is a deterministic nO(k2 log k) time black-box PIT algorithm for
multilinear ΣΠΣΠ(k) circuits.

We mention an obvious next-step question.

Open Problem 28. Give a subexponential time PIT algorithm for ΣΠΣΠ(k) circuits.

The generator of [SV09]

In this section we construct a map from F2t to Fn with the following property: Its image contains
all points a ∈ Fn with at most t nonzero entries. Throughout the entire section we fix a set A =
{α1, α2, . . . , αn} ⊆ F of n distinct elements.9

Definition 4.3. For every i ∈ [n] let ui(w) : F → F be the i-th Lagrange Interpolation polynomial
for the set A. That is, each ui(w) is polynomial of degree n − 1 satisfying ui(αj) = 1 if i = j and
zero otherwise. For every i ∈ [n] and t ≥ 1 define Git(y1, . . . , yt, z1, . . . , zt) : F2t → F as

Git(y1, . . . , yt, z1, . . . , zt)
def
=

t∑
j=1

ui(yj) · zj .

9We assume w.l.o.g. that |F| > n as we are allowed to use elements from an appropriate extension field.

84

Finally, let Gt(y1, . . . , yt, z1, . . . , zt) : F2t → Fn be defined as

Gt(y1, . . . , yt, z1, . . . , zt)
def
=
(
G1
t , G

2
t , . . . , G

n
t

)
= t∑

j=1

u1(yj) · zj ,
t∑

j=1

u2(yj) · zj , . . . ,
t∑

j=1

un(yj) · zj

 .

The following is an immediate observation that was used in the proof of Theorem 4.22.

Observation 4.4. The following properties hold:

1. For every t ≥ 1, it holds Gt(ȳ, 0̄) ≡ 0.

2. Denote with ēi ∈ {0, 1}n the vector that has 1 in the i-th coordinate and 0 elsewhere. Then

Gt+1 = Gt +

n∑
i=1

ui(yt+1) · zt+1 · ēi .

Hence, for every t ≥ 1 and αm ∈ A we have that Gt+1|yt+1= αm = Gt + zt+1 · ēm .

3. Let t,m ∈ N, I ⊆ [n] and |I| ≤ t. Then, it holds that

Im
(
G

[n]\I
t

)
⊆ Im (Gt+m) .

Property (2) is the one showing that Gt can keep any t variables “alive”.

4.8 Read-Once Formulas

As mentioned above, in spite of the known lower bounds for multilinear formulas, there is no PIT
algorithm even for multilinear ΣΠΣ formulas (Open Problem 26). Due to this lack of progress, the
model of read-once formulas (ROF) – a restricted model of multilinear formulas – was considered.
Roughly, an ROF is an arithmetic formula in which every variable labels at most one leaf. It is clear
that every ROF is also a multilinear formula. We now give the formal definition.

Definition 4.4. A read-once arithmetic formula (ROF) over a field F in the variables {x1, . . . , xn}
is a binary tree as follows. Like in a formula, the leaves are labeled by variables and the internal
nodes by {+,×}. In addition, every node is labelled by a pair of field elements (α, β) ∈ F2. Each
input variable labels at most one leaf. The computation is performed in the following way. A leaf
labeled by xi and (α, β) computes αxi + β. If a node v is labelled by ? ∈ {+,×} and (α, β) and its
children compute the polynomials f1 and f2, then v computes α(f1 ? f2) + β.

We say that f is a read-once polynomial (ROP) if it can be computed by an ROF. An ROF that
does not contain addition gates is called a multiplicative ROF. In a similar way, define multiplicative
ROP.

85

Clearly, not every polynomial is an ROP. For example, in [SV08] it is shown that x1x2+x2x3+x1x3

is not an ROP.

It is not hard to see that there is a linear time white-box PIT algorithm for ROFs. The best
deterministic black-box PIT algorithm for the problem, however, runs in time nO(logn) [SV09]. The
following theorem of Shpilka and Volkovich [SV09] gives such a black-box PIT algorithm for sums of
a small number of ROFs.

Theorem 4.24 ([SV09]). There is a deterministic algorithm for deciding whether a polynomial
f = f1 + · · · + fk, where f1, . . . , fk are ROPs in {x1, . . . , xn} and k ≤ n/3, is zero or not. The
algorithm runs in time nO(k) in the white-box model and in time nO(k+logn) in the black-box model.

The proof given by Shpilka and Volkovich [SV09] has three parts. First, they prove the theorem
for k = 1. Second, they prove a hardness of representation result, which is basically a lower bound
for sum of read-once formulas that have a certain property. Third, they show how to combine the
PIT for a single ROP with the hardness of representation result to obtain the PIT for sums of ROPs.

We start with the proof for the case k = 1. Shpilka and Volkovich [SV09] proved that the mapping
Glogn constructed in Section 4.7.2 is a generator for ROFs.

Theorem 4.25 ([SV09]). Let f be an ROP. If f 6≡ 0 then f ◦Gt is not constant for t = dlog ne+ 1.
Hence, if S ⊆ F is a set of size n2 + 1, then f ≡ 0 iff f ◦ Gt is zero on S2t. This gives a black-box
PIT algorithm of running time n4 logn+O(1) for ROFs.

Proof. The proof is by induction on the number of variables n. The simple idea behind the induction
is that the two children of the output node compute two variable-disjoint ROPs. Hence, at least one
of them contains at most n/2 variables. We therefore need to find a generator that does not cause
too many cancelations between variable disjoint ROPs. Since Gt allows us to keep Ω(t) variables
“alive,” we can show that it has the required property.

The case n ≤ 2 is easily verified. For n > 2, consider the structure of the ROF computing
f . If f = α(f1 × f2) + β then the induction hypothesis immediately implies the claim for f . So
we can assume f = f1 + f2 and without loss of generality |var(f1)| ≤ n/2. By the induction
hypothesis f1 ◦ Gt−1 is not constant. Since f is an ROF one can prove (by induction on the size
of the ROF) that there exists some variable xm such that f1(G1

t−1, . . . , G
m−1
t−1 , xm, G

m+1
t−1 , . . . , G

n
t−1)

depends on xm.10 Thus, by Property 2 of Observation 4.4, f1 ◦ Gt|yt=am depends on zm, where
yt, zm are variables of Gt+1. As xm does not belong to var(f2) (since f is an ROF) we get that
f ◦Gt|yt=am = f1 ◦Gt|yt=am + f2 ◦Gr|yt=am depends on zm and therefore f ◦Gt is not constant. In
particular, f ◦Gt is a nonzero polynomial of degree at most n2 in each variable. Evaluating it on S2t

gives zero if and only if f is zero.

We now proceed to the second step. We first define the notion of a justifying assignment that in
short can be described as an assignment that “preserves dependencies.” This notion was first defined
in Ref. [BHH95] for the aim of reconstructing read-once formulas. Justifying assignments turn out
to be a very important tool for dealing with ROFs.

10Surprisingly, this is not true for general polynomials, e.g., consider g(x1, x2, x3) = x1 · x2 + x1 · x3 + x2 · x3 over F2.
Substituting x1 = x2 = x3 = y gives the polynomial g(y, y, y) = y. However, g(x1, y, y) = y and so it does not depend
on x1 and similarly for any other xi.

86

Definition 4.5. We say that an assignment a ∈ Fn is a justifying assignment of a polynomial f if
for every subset I ⊆ var(f) we have that var(f |xI=aI) = var(f) \ I. We also say that f is a-justified
in this case. We say that an assignment a is a weakly-justifying assignment of f if the condition
above holds when |I| = 1.

The following is a simple observation.

Observation 4.5. A multilinear polynomial f is a-justified iff for every xi ∈ var(f) it holds that11

∂xi(f)(a) 6= 0.

The following useful claim was proved in [SV09]. It basically shows how to use PIT for a given
circuit class in order to construct a common justifying assignment for a set of polynomials constructed
by circuits in this class. Here we prove the claim for the special case of ROFs, taking into account
Theorem 4.25.

Lemma 4.10. Let f1, . . . , fk be n-variate ROPs. Let T ⊆ F be of size |T | = kn3 + 1. Then

Hkn
def
= Gt(T

2t), for t = dlog ne + 1, contains a common justifying assignment for f1, . . . , fk. Given
the ROFs computing the fi’s, we can find this common justifying assignment in time poly(n, k).

Proof. For i ∈ [n], j ∈ [k], set gji
def
= ∂xi(fj) ◦Gt. As a partial derivative of an ROP is also an ROP,

Theorem 4.25 implies that if ∂xi(fj) 6≡ 0 then gji 6≡ 0. Consider the polynomial

g
def
=

∏
i,j|gji 6≡0

gji .

It is a nonzero (2t)-variate polynomial of degree at most kn3 in each variable. As T is large enough,
g|T 2t 6≡ 0. Equivalently, there exists a ∈ T 2t so that if gji 6≡ 0 then gji (a) 6= 0. Let i ∈ [n], j ∈ [k] be

such that xi ∈ var(fj). Then ∂xi(fj) 6≡ 0 and hence gji 6≡ 0, which implies ∂xi(fj)(Gt(a)) = gji (a) 6= 0.
By Observation 4.5 it follows that Gt(a) is a justifying assignment for every fj .

In the white-box case we can actually use the O(n) time white-box PIT algorithm for ROFs in
order to obtain a common justifying assignment. The idea is to find the entries of the point a one
by one, using the PIT algorithm for the gji ’s. For more details, see Ref. [SV08].

Lemma 4.10 tells us that there is a subset Hkn ⊂ Fn of size |Hkn| = poly(klogn, nlogn) that contains
a common justifying assignment for every set of k ROPs. Assume that a = (a1, . . . , an) ∈ Fn is such
an assignment for f1, . . . , fk. By shifting the variables xi ← xi + ai we can assume that the zero
vector, 0̄ ∈ Fn, is justifying for all the fi’s. The following theorem of Shpilka and Volkovich [SV09]
shows a lower bound for a sum of 0̄-justified read-once formulas.

Theorem 4.26. The monomial Pn = x1 · x2 · · · · xn cannot be computed as a sum of k ≤ n/3
read-once formulas that are weakly-0̄-justified.

11In [SV08] the notion of discrete partial derivative was used. The discrete partial derivative of f with respect to xi
is defined as f |xi=1 − f |xi=0. Notice that for multilinear polynomials this is the same as ∂xi(f) and so we will use our
notations instead.

87

The polynomial x1 · x2 · · · · xn is an ROP that is not weakly-0̄-justified. It is not difficult to see
that using a simple interpolation (for the polynomial f(y) =

∏n
i=1(y+ xi)), one can represent Pn as

a sum of n read-once formulas that are weakly-0̄-justified. Thus, the theorem above is almost tight.

Proof. The proof is by induction on k. The cases k ∈ {0, 1} follow by definition. We now assume
that k ≥ 2 and that n ≥ 3k. Let f1, . . . , fk be weakly-0̄-justified ROPs over F[x1, . . . , xn]. Assume
towards a contradiction that

∑
i∈[k] fi = Pn. The idea of the proof is to eliminate a “large” number

of ROPs at the cost of a “small” number of variables. Specifically, we find a small set of (indices of)
input variables J ⊆ [n− 1] and a nonzero constant α ∈ F so that if we take a partial derivative with
respect to all of the variables in J and substitute xn = α then we eliminate many fi’s in a way that
the rest of the ROPs remain weakly-0̄-justified. We thus get a representation of ∂J(Pn)|xn=α = α·Pn′ ,
with a relatively large n′, as a sum of a small number of weakly-0̄-justified ROPs. We then use the
induction hypothesis to reach a contradiction. We now proceed with the proof. There are two cases
to consider.

Case 1: There exist i 6= j in [n] and m in [k] such that ∂xi∂xj (fm) ≡ 0, namely, fm does not
contain xixj in any of its monomials. Assume without loss of generality that i = n − 1, j = n and
m = k. It thus holds that

∑
i∈[k−1] ∂xn∂xn−1(fi) = Pn−2. It may be the case that more than one fm

vanishes when we take a partial derivative with respect to xn, xn−1, however they cannot all vanish
as Pn contains xnxn−1. Lemma 4.11 below (whose simple proof is omitted) guarantees that the
polynomials ∂xn∂xn−1(f1), · · · , ∂xn∂xn−1(fk) are also weakly-0̄-justified ROPs.

Lemma 4.11. A partial derivative of a weakly-0̄-justified ROP is a weakly-0̄-justified ROP.

We thus obtain a representation of Pn−2 as a sum of 0 < k′ ≤ k−1 weakly-0̄-justified ROPs such
that 0 < 3k′ ≤ 3k − 3 < n− 2, a contradiction.

Case 2: For every i 6= j in [n] and m in [k] we have that ∂xi∂xj (fm) 6≡ 0. In this case the ROFs for
f1, . . . , fk do not contain any + gate, that is, they are multiplicative ROPs. The following lemma of
Shpilka and Volkovich [SV09] is intuitive when thinking about the tree structure of a multiplicative
ROF, yet the proof is rather technical and so we omit it.

Lemma 4.12. Let g be a multiplicative ROP with |var(g)| ≥ 2. Then, for every xi ∈ var(g)
there exists xj ∈ var(g) such that ∂xj (g) = (xi − α)h for some α ∈ F and an ROP h such that
var(h) = var(g) \ {xi, xj} If, in addition, g is weakly-0̄-justified then so is h. Moreover, in this case
α 6= 0 and there is at most one element β 6= α ∈ F such that g|xi=β is not weakly-0̄-justified.

Lemma 4.12 implies that for every m ∈ [k] there exist jm ∈ [n], a nonzero αm ∈ F and an ROP
hm such that ∂xjm (fm) = (xn − αm)hm. Let A = {αm | m ∈ [k]}. Clearly 0 /∈ A. For every α ∈ A,
let Eα = {m ∈ [k] | αm = α} and Bα = {m ∈ [k] | αm 6= α and fm|xn=α is not weakly-0̄-justified}.
Intuitively, Eα is set of the ROPs that can be eliminated by substituting xn = α and Bα is set
of (“bad”) ROPs that will become non weakly-0̄-justified upon the substitution and thus require
a special treatment. From the definition of A we have that |Eα| ≥ 1 and

∑
α∈A |Eα| = k. In

fact, the Eα’s form a partition of [k]. Lemma 4.12 implies that for each α 6= α′ in A the sets
Bα and Bα′ are disjoint (since for every ROP there exists at most one “bad” value of xn) and
therefore

∑
α∈A |Bα| ≤ k. Hence, there exists α0 ∈ A such that |Bα0 | ≤ |Eα0 | and 0 < |Eα0 |. Let

I = Eα0 ∪Bα0 ⊆ [k] and J = {jm | m ∈ I } ⊆ [n]. By choice, 1 ≤ |J | ≤ |I| ≤ |Eα0 |+ |Bα0 | ≤ 2 |Eα0 |
and n /∈ J . For every m ∈ [k], define f ′m = ∂J(fm), where ∂J(·) is the partial derivative with respect

88

to {xj : j ∈ J}. We note the following properties: By Lemma 4.11, every f ′m is a weakly-0̄-justified
ROP. Secondly, for every m ∈ I we have that f ′m = (xn − αm)h′m for some ROP h′m(x̄). Indeed, as
jm ∈ J we have that

f ′m = ∂J(fm) = ∂J\{jm}(∂{jm}(fm)) = ∂J\{jm} ((xn − αm)hm) = (xn − αm) · ∂J\{jm}hm.

In addition, for every m ∈ I we have that h′m is a weakly-0̄-justified ROP. This follows from the
fact that a partial derivative of a weakly-0̄-justified ROP is also a weakly-0̄-justified ROP and the
previous two properties.

For m ∈ [k] consider the ROP f ′′m = f ′m|xn=α0 . Based on the above we can conclude the following:
(1) For every m ∈ Eα0 , since αm = α0, it holds that f ′′m = (α0 − αm)h′m ≡ 0. (2) For every m ∈ Bα0

we have that f ′′m = (α0−αm)h′m is a nonzero weakly-0̄-justified ROP. In contrast to fm, the structure
of f ′m guarantees that it remains weakly-0̄-justified when substituting xn = α0. (3) For m ∈ [k] \ I
the definitions of Eα0 and Bα0 guarantee that fm|xn=α0 is a weakly-0̄-justified ROP. Lemma 4.11
implies that the same holds for f ′′m. In this case it is also possible that f ′′m ≡ 0.

Concluding, we get that f ′′m ≡ 0 for m ∈ Eα0 and f ′′m is a weakly-0̄-justified ROP for m ∈ [k]\Eα0 .
Without loss of generality, assume that J = {n′ + 1, n′ + 2, . . . , n − 2, n − 1} for some n′. Thus∑

m∈[k] f
′′
m = ∂J(Pn|xn=α0) = α0 · Pn′ . That is, we found a representation of α0 · Pn′ as a sum of

weakly-0̄-justified ROPs, where at least |Eα0 | of the ROPs are zeros. As 2 |Eα0 | ≥ |J | = (n− 1)− n′
and |Eα| ≥ 1, we found a representation of α0 · Pn′ as a sum of 0 ≤ k′ < k weakly-0̄-justified ROPs
such that

0 ≤ 3k′ ≤ 3(k − |Eα|) = 3k − 3 |Eα| ≤ n− 3 |Eα| ≤ n′ + 1− |Eα| ≤ n′.

By induction we get that α0 = 0, which is a contradiction as α0 ∈ A and 0 /∈ A.

Using this hardness of representation result we get the claimed PIT for sum of ROFs.

Proof of Theorem 4.24. Let Akn = {w ∈ {0, 1}n : # of ones in w is at most k}. Let Hkn be the set
constructed in Lemma 4.10. Define J kn = Akn +Hkn = {v + u : v ∈ Akn and u ∈ Hkn}. We now show
that if f =

∑
i∈[k] fi 6≡ 0 then f |J kn 6≡ 0. Indeed, let ρ ∈ Hkn be a common justifying assignment to

the fi’s. We will show that ρ + Akn contains a nonzero assignment for f . By shifting the variables
(xi ← xi + ρi) it is enough to prove the following claim.

Claim 4.4. Let f =
∑

i∈[k] fi 6≡ 0 be a sum of 0̄-justified ROPs. Then f |Akn 6≡ 0.

Proof. The proof is by induction on the number of variables in f . If |var(f)| ≤ k then, since f is
a multilinear polynomial, evaluating it on all zero-one assignments tells us whether it is identically
zero or not. If |var(f)| > k, on the other hand, consider gi = f |xi=0 for each variable xi. Each gi
is a 0̄-justified ROP. By the induction hypothesis, evaluating gi on Akn−1 ⊂ Akn tells us whether gi
is identically zero or not. If one of the gi’s is not zero then so is f and we are done. If all the gi’s
are zero then either f ≡ 0 or the polynomial Pn divides f . Indeed, if f 6≡ 0 but gi ≡ 0 then xi is a
factor of f . But now Theorem 4.26 tells us that if f =

∑
i∈[k] fi = c · Pn for some constant c ∈ F,

then k > n/3, which is a contradiction.

The black-box identity testing algorithm now follows immediately: simply evaluate f on all points
in J kn . The running time is |J kn | = nO(k+logn). The algorithm in the white-box case is based on the

89

same approach but is faster, due to the white-box part of Lemma 4.10 saying that we can find a
common justifying assignment in time poly(n, k); having a common justifying assignment a at hand,
we simply evaluate f on Akn + a.

An interesting aspect of the proof of Theorem 4.24 is that it uses a lower bound for a very weak
model (sum of weakly-0̄-justified ROFs) in order to obtain a PIT algorithm. In addition, the lower
bound is proved for a very easy polynomial, Pn, which is difficult only when we consider weakly-0̄-
justified ROFs. Furthermore, the way that the lower bound is used is very different from the way
suggested in Theorem 4.7. Specifically, the hitting set is constructed by considering the zero set of
the “hard” polynomial Pn. This zero set is very simple and very structured (it is the union of the
halfspaces xi = 0), and it can be shown that if f vanishes on all points in the hitting set then Pn
is a factor of f . The lower bound is then invoked to imply that f = 0. It is an intriguing question
whether this approach can be adapted to other scenarios to yield a new way of transforming a lower
bound to a PIT algorithm.

Theorem 4.24 gives a quasi-polynomial time black-box algorithm for sum of k ROFs. No poly-
nomial time black-box algorithm is known when k = O(1). In particular the following question is
still open.

Open Problem 29. Give a polynomial time black-box PIT algorithm for read-once formulas.

In Ref. [SV09] it was shown that (a slightly modified version of) Theorem 4.24 actually holds for
the more general case of preprocessed read-once formulas. In this model we can replace xi with a
univariate polynomial pi(xi). When we consider a sum of k ROFs, we can have a different polynomial
pji (xi) for each fj . If deg(pji) < r for all i, j then two modifications are required in order to get the
PIT algorithm. The first is to slightly change the size of T in Lemma 4.10 to O(kn3r). The second
is to replace Akn by the set of all vectors having at most k nonzero coordinates and taking values in
S, where S ⊂ F can be taken to be any set of size r + 1. These changes give a PIT algorithm for
preprocessed ROFs of running time (nr)O(k+logn) (some more work is required to prove that these
changes indeed give the required result).

Another model that was considered in Ref. [SV09] is that of small depth read-once formulas.
An interesting point in the definition is that such formulas have alternating levels of + gates and
MUL gates, where a MUL gate can compute any multiplicative ROF in its inputs. This generalizes
the usual notion of bounded depth formulas in which we have alternating levels of + and ×. The
authors of Ref. [SV09] give an nO(d+k)-time black-box PIT algorithm for the sum of k depth-d ROFs.
Since multilinear ΣΠΣ(k) circuits are actually a sum of k ROFs, this gives the currently best PIT
algorithm for them12.

Theorem 4.27 ([SV09]). There is a nO(k)-time black-box PIT algorithm for multilinear ΣΠΣ(k)
circuits.

Jansen et al. [JQS09] showed how to generalize Theorem 4.24 to get a PIT algorithm for a sum of
k read-once arithmetic branching programs of roughly the same running time. The proof is similar
to the proof of Theorem 4.24. In particular it is based on first solving the case k = 1 and then

12The theorem also holds if we consider preprocessed multilinear ΣΠΣ(k) circuits, which form a sub-model of depth-4
circuits.

90

proving a hardness of representation theorem using essentially the same ideas. The interested reader
is referred to [JQS09] for details.

Very recently, Anderson et al. [AvMV10] obtained a deterministic PIT algorithm for read-k
formulas. Observe that this model contains as sub-models multilinear depth-3 and depth-4 formulas
as well as sum of ROFs. The PIT algorithm of Anderson et al. [AvMV10] runs in time nk

O(k)
in the

white-box model and in time nk
O(k)·logn in the black-box model. While for the sub-models mentioned

above the running time is worse than those given in Theorems 4.27, 4.20 and 4.24, the algorithm of
Anderson et al. [AvMV10] works for a more general model. Interestingly, the approach of Anderson
et al. combines the technique developed in the proofs of Theorems 4.20 and 4.24. The basic idea is
to apply partial derivatives (using the technique of Theorem 4.24) to the formula and show that if we
take the “correct” set of partial derivatives then the formula becomes a sum of c-compressed formulas.
I.e. formulas that each of their factors depends on a relatively small number of variables. At this
point, the algorithm reduces each factor to a linear form by fixing the values of most variables, using
ideas similar to the proof of Theorem 4.20. Finally, using the rank bound for multilinear ΣΠΣ(k)
circuits (Theorem 4.17) the authors prove that the resulting depth-3 formula is nonzero. We stress
that while this is the basic scheme, the proof is of course more complicated and does not use previous
techniques in a straightforward manner.

Theorem 4.28 ([AvMV10]). There is a deterministic PIT algorithm for read-k multilinear formulas.

The algorithm runs in time nk
O(k)

in the white-box model and in time nk
O(k)·logn in the black-box

model.

4.9 Relation to Other Problems

In this section we discuss the relation between PIT and other problems. We start by showing the
relation to the problem of polynomial factorization. We then discuss the problem of read-once testing
which is a generalization of the PIT problem.

4.9.1 Polynomial Factorization

Consider the following approach for PIT of multilinear formulas. Start by making the formula into a
read-once formula, that is, a formula in which each variable labels at most one leaf. This can be done
by replacing the j’th occurrence of xi with a new variable xi,j . then, check whether this formula is
zero or not. If it is zero then the original formulas was also zero and we are done. Otherwise start
replacing each xi,j with xi. After each replacement we would like to verify that the resulting formula
is still not zero. When replacing xi,j with xi, we get zero iff the linear function xi−xi,j is a factor of
the formula that we have at hand. Thus, we somehow have to find a way of verifying whether a linear
function is a factor of a multilinear formula. Furthermore, as we start with a read-once formula for
which PIT is known (Section 4.8), we can assume that we know many inputs on which the formula
is not zero. One may hope that before replacing xi,j with xi we somehow managed to obtain inputs
that will enable us to verify whether xi − xi,j is a factor of the formula or not. This, of course, is
not formal, but it does show the importance of understanding how to factor a multilinear formula
given a PIT algorithm, or even just some (structured) set of nonzero inputs. As the different factors
of a multilinear formula are variable disjoint this motivates the study of factorization of polynomials

91

to variable-disjoint factors. Henceforth, following Shpilka and Volkovich [SV10b], we refer to this
problem as the decomposition problem.

Let X = {x1, . . . , xn} be the set of variables. For a set I ⊆ [n], denote by XI the set of variables
whose indices belong to I. A polynomial f(X) is said to be decomposable if it can be written as
f(X) = g(XI) · h(X[n]\I) for some I ⊆ [n] of size 0 < |I| < n. The indecomposable factors of a
polynomial f(X) are polynomials g1(XI1), . . . , gk(XIk) such that the Ij ’s are disjoint sets of indices,
f(X) = g1(XI1) · g2(XI2) · · · gk(XIk) and the gi’s are indecomposable. It is not difficult to see
that every polynomial has a unique factorization to indecomposable factors, up to multiplication by
field elements. The problem of polynomial decomposition is defined in the following way: Given
an arithmetic circuit from some circuit class M computing a polynomial f , we have to output
circuits for each of the indecomposable factors of f . If we only have a black-box access to f then
we have to output a black-box for each of the indecomposable factors of f . We refer to this as
black-box polynomial decomposition. Clearly, finding the indecomposable factors of a polynomial f
is an easier task than finding all of the irreducible factors of f . However, for the natural class of
multilinear polynomials these two problems are in fact the same.

The problem can be considered in its decision version as well. That is, given an arithmetic circuit
computing a multivariate polynomial decide whether the polynomial is decomposable or not. In
the decision version the algorithm just has to answer “yes” or “no” and is not required to find the
decomposition.

Many randomized algorithms are known for factoring multivariate polynomials in the black-box
and white-box settings (see, e.g., Refs. [vzGG99, Kal03, vzG06]). These algorithms clearly imply
randomized algorithms for the decomposition problem. Similarly to the case of PIT, it is a long-
standing open question whether there is an efficient deterministic algorithm for factoring multivariate
polynomials (see Refs. [vzGG99, Kay07]). Moreover, there is no known deterministic algorithm for
the decision version of the problem and not even for the simpler case of multilinear polynomials.
The authors of Ref. [SV10b] showed that this is not a coincidence. Namely, they show that PIT
and decomposing are closely related tasks. One direction is quite easy - showing that deterministic
decomposing (even in its decision version) implies deterministic PIT. In what follows M is some
fixed model of arithmetic circuits, for example, M can be the class of multilinear formulas, depth-4
circuits and so forth.

Observation 4.6. Assume that there is a deterministic algorithm for the decision version of the
polynomial decomposition problem, that is, an algorithm that when given access (explicit or via a
black-box) to a size s degree r circuit C ∈M runs in time T (s, r) and outputs “yes” iff the polynomial
computed by C is decomposable. Then there is a deterministic algorithm that runs in time O(T (s+
2, r)) and solves the PIT problem for size s degree r circuits from M.

Proof. Let C be an arithmetic circuit. Consider C ′
def
= C + y · z where y, z are new variables. Note

that C ′ is decomposable iff C 6≡ 0 (in addition, C ′ is multilinear iff C is).

The other direction is more involved and in fact we may need a PIT algorithm for a slightly larger
class of circuits than the circuit that we wish to decompose. Given a circuit class M, the circuit
class MV is defined as follows. The class MV contains all circuits of the form C1 + C2 × C3 where
C1, C2, C3 ∈M and C2, C3 are variable disjoint.

92

Theorem 4.29 ([SV10b]). Assume that there is a deterministic algorithm that when given access
(explicit or via a black-box) to a circuit C ∈ MV , of size 3s and degree r, runs in time T (s, r) and
decides whether C ≡ 0. Then, there is a deterministic algorithm that when given access (explicit or
via a black-box) to a size s degree r circuit C ′ fromM, runs in time O(n3 ·r ·T (s, r)) and decomposes
C ′. Moreover, each decomposable factor belongs to M and is of size at most s.

The theorem says that in order to find the decomposable factors of circuits from M it suffices
to have a PIT algorithm for a slightly larger family of circuits MV . In fact, for most natural circuit
classes,MV is the same class asM, e.g., whenM is the class of multilinear formulas. On the other
hand, when M is the class of ROFs then the theorem requires a PIT algorithm for the sum of two
ROFs. It is an interesting question to prove a similar result using a PIT for M itself and not for a
larger class.

Proof. Let f be a polynomial that is computed by a size s degree r circuit C ∈ M. The proof
actually gives an algorithm that returns a partition of [n] to I1, . . . , Ik such that the decomposition
of f is f = h1(XI1) · · · · · hk(XIk) for some indecomposable polynomials h1, . . . , hk. We call the
partition I = {I1, . . . , Ik} the variable-partition of f . The algorithm has the following four steps.

1. Find a justifying assignment a to f .

2. Recursively, find the variable-partition I ′ of f |xn=an .

3. For every set I ∈ I ′, use the PIT to check whether C(a) · C ≡ C|xI=aI · C|x[n]\I=a[n]\I . If this
is the case then add I to I. If it is not the case, then move to the next I. At the end, add the
remaining elements to I. Namely, I ← I ∪ {[n] \ ∪I∈II}.

4. For every I ∈ I, let hI = f |x[n]\I=a[n]\I and α = f(a)1−|I|. Output f = α
∏
I∈I

hI .

We now explain why the algorithm works. Assume that the first step works, that is, that we
found a justifying assignment a for f (this is given to us by assumption). The proof is by induction
on n. The case n = 1 is trivial as a univariate polynomial is indecomposable. Now assume that
n > 1. Let f = h1(XI1) · . . . ·hk−1(XIk−1

) ·hk(XIk) be the decomposition of f , where I = {I1, . . . , Ik}
is its variable-partition. Assume without loss of generality that n ∈ Ik. Consider f ′ = f |xn=an . It
holds that f ′ = h1 · . . . ·hk−1 ·g1 ·g2 · . . . ·g` where the gi’s are the indecomposable factors of hk|xn=an .
Denote by Ik = {Ik,1, . . . , Ik,`} the variable-partition of hk|xn=an . As a is a justifying assignment of
f , we obtain that var(f ′) = {xi : i ∈ [n−1]}. ¿From the uniqueness of the decomposition and by the
induction hypothesis, the recursive application of the algorithm on f ′ returns the variable-partition
of f ′, that is, I ′ = {I1, . . . , Ik−1, Ik,1, . . . , Ik,`}.

Lemma 4.13. Let F ∈ F[x1, . . . , xn] be a polynomial and let a ∈ Fn be a justifying assignment for
it. Then for every I ⊆ [n] of size 0 < |I| < n, we have F (a) · F ≡ F |xI=aI · F |x[n]\I=a[n]\I iff I is a
disjoint union of sets from the variable-partition of F .

Proof. Assume that equality holds. Since F is a-justified, both F |xI=aI and F |x[n]\I=a[n]\I are
nonzero, and hence F (a) 6= 0. Consequently, if we define g(X[n]\I) = F |xI=aI and h(XI) =

93

(F |x[n]\I=a[n]\I)/F (a), we obtain that F = g(X[n]\I) · h(XI). The uniqueness of the decomposition of
F thus implies that I is a disjoint union of sets from the variable-partition of F .

To prove the other direction notice that we can write F ≡ g(X[n]\I) · h(XI) for two polynomials
g and h. This implies F |xI=aI ≡ g(X) · h(a) and similarly F |x[n]\I=a[n]\I ≡ g(a) · h(X). Hence,
F (a) · F ≡ g(a) · h(a) · g(X) · h(x) ≡ F |xI=aI · F |x[n]\I=a[n]\I .

The lemma tells us that the third and forth steps of the algorithm indeed find the decomposition
of f . To finish the proof, we now analyze the running time of the algorithm. An analog of Lemma 4.10
shows that, given a PIT algorithm for circuits of the form Cxi=1 − Cxi=0, that runs in time T (s, r),
when C ∈ M is of size s and degree r, we can find a justifying assignment for C in time O(n3 · r ·
T (s, r)). We omit the proof of this extension and the interested reader can find it in Ref. [SV08]. Once
we have a justifying assignment it is not difficult to see that the recursion runs in time O(n2 ·T (s, r)).
Thus, the total running time can be bounded from above by O(n3 · r · (T (s, r))).

We note two interesting aspects of Theorem 4.29. The first is that the complexity of a decom-
posable factor of Φ is the same as the complexity of Φ. I.e., even when Φ comes from a restricted
family of circuits we are guaranteed that its decomposable factors belong to the same restricted
family. This is not known for the case of general factors, see e.g. Open Problem 19. The second
interesting aspect is that the theorem transforms a PIT algorithm for a weak class to decomposition
of a slightly weaker class. In general, similarly to Theorem 4.7, one can expect that a strong lower
bound for arithmetic circuits will lead to strong derandomization results. However, it is not clear
that a lower bound for a weak circuit class (like the one that follows from assuming the existence
of a polynomial time black-box PIT algorithm, see Theorem 4.6) can help in derandomization, even
for weaker classes.

4.9.2 Read-Once Testing

Consider the following generalization of the PIT problem. Given a polynomial, either explicitly
by a circuit or as a black-box, decide whether it computes an ROP. Namely, decide whether there
is a read-once formula computing it. Following [SV08] we refer to this problem as the read-once
testing problem (ROT for short). Surprisingly enough, Shpilka and Volkovich [SV08] proved that
this problem is (roughly) equivalent to PIT. That is, there is a deterministic algorithm for PIT iff
there is a deterministic algorithm for ROT.

As in Theorem 4.29 we need a PIT algorithm for a slightly larger circuit class than the one we
wish to do ROT for. In what follows we assume that M is some circuit class such that there is a
deterministic PIT algorithm for the circuit class MV (defined as before).

Theorem 4.30. There is a deterministic algorithm that, given a n-variate size s degree r circuit
C ∈M, runs in time poly(n, r, s, T (s, r)), where T (s, r) is the cost of a single PIT algorithm for size
s degree r circuits from MV , and outputs “yes” iff C is an ROP.

Sketch. The algorithm consists of the following steps.

1. Find a justifying assignment a for the polynomial computed by C. This can be done in time
O(n3 · r · T (s, r)) by a generalized version of Lemma 4.10.

94

2. Reconstruct an ROF from the justifying assignment a. In Ref. [HH91] it was shown that given
a black-box access and a justifying assignment for a polynomial f , one can construct, in time
poly(n), a read-once formula Φ such that if f is an ROP then Φ computes f . At this stage we
have Φ and all we have to do is verify whether C and Φ compute the same polynomial.

3. Verify that C ≡ Φ. The idea is to recursively ensure that every gate v of Φ computes the same
polynomial as a “corresponding” restriction of C. To give a rough sketch, consider v, the root
of Φ. Denote Φ = α · (Φv1 ? Φv2) + β, where v1, v2 are the two children of v and ? ∈ {+,×}.
Assume that the variables of vi are Ii. The two sets I1 and I2 are disjoint. Consider the circuit
C1 = C|xI2=aI2

. Similarly define C2, and the ROFs Φ1 and Φ2. Recursively verify that Ci ≡ Φi.
The only thing left is to verify that indeed C ≡ α · (C1 ? C2) + β. This can be done as we
have a PIT algorithm for circuits in MV which is exactly what we need. This step requires
O(n · T (s, r)) time.

4.10 Concluding remarks

In this Section we surveyed most of the known deterministic identity testing algorithms. We saw
that the main question is to find black-box algorithms for depth 4 circuits. We also saw that no
algorithm is known even for ΣΠΣ circuits and that current techniques can deal with circuits with a
bound on either (1) the top fan-in or (2) the number of times a variable is read or (3) the number
of different functions appearing in a multiplication gate. The only exception to this is the white-box
algorithm of Raz and Shpilka [RS05] that handles the case of set-multilinear ΣΠΣ circuits. We think
that the first step towards a better understanding of ΣΠΣ circuits (and hopefully ΣΠΣΠ circuits)
is answering Open Problem 27. Namely, giving an efficient deterministic black-box identity testing
algorithm for set-multilinear ΣΠΣ circuits. Another possible approach to ΣΠΣ circuits is obtaining
PIT algorithms for the symmetric model discussed at the end of Section 3.5: Decide whether a
given polynomial f of the form f = σr,m(`1, . . . , `m) is equivalently zero, where σr,m is the degree r
elementary symmetric polynomial in m variables and the `i’s are linear functions in x1, . . . , xn. This
question is open even in the white-box model.

Open Problem 30. Give a deterministic PIT algorithm for polynomials of the form f =
σr,m(`1, . . . , `m).

At the end of the Section we saw a connection between PIT and polynomial decomposition. It is
interesting to understand the relation between problems in RP. In particular it may be the case that
derandomizing PIT implies derandomization of the general polynomial factorization problem. Note,
however, that a decomposable factor of a circuit Φ has essentially the same complexity as Φ, even
when Φ is, say, a sum of read-once formulas or a bounded depth circuit, etc. In the case of general
factorization no such result is known, see Open Problem 19.

95

Chapter 5

Reconstruction of Arithmetic Circuits

The reconstruction problem for arithmetic circuits is defined as follows. We are given a black box
“holding” an arithmetic circuit, that belongs to a predetermined family of circuits, e.g., bounded
depth circuits, multilinear circuits, read-once formulas etc., and that computes some multivariate
polynomial f . We are allowed to ask for the value of f on inputs of our choice. We then have to
come up with an arithmetic circuit computing the same polynomial of roughly the same complexity
as the black-box circuit. The goal is to minimize the number of queries and running time required
for constructing the circuit.

A reconstruction algorithm is efficient if its running time is polynomial in the circuit complexity of
the black-box polynomial. This problem is the algebraic analog of the learning with membership and
equivalence queries problem from computational learning theory of Boolean functions1. In the model
of membership and equivalence queries, the learner can query the function on inputs of her choice
(membership queries). In addition whenever the learner constructs a hypothesis she can ask for a
counterexample, if one exists (an equivalence query). Namely, an input x such that the hypothesis
and the underlying function disagree on. Eventually the learner has to come up with a hypothesis
that computes the function exactly. In the arithmetic setting equivalence queries can be replaced by
membership queries, as by picking an input at random we can tell any two difference polynomials
apart.

A closely related notion is that of interpolation of a polynomial. In the interpolation problem
the goal of the learner is to find a the coefficients of the underlying polynomial using membership
queries. While this problem is closely related to the reconstruction problem it is not exactly the
same. Note, however, that for sparse polynomials (ΣΠ circuits) interpolation and reconstruction are
the same problem.

In the Boolean world, the PAC learning model is more often considered than the model of
learning with membership and equivalence queries. In the PAC model the learner gets examples of
the form (x, f(x)) where the input x is drawn from some unknown distribution D on inputs. She
then has to come up with a hypothesis that agrees with f on most inputs, according to D. In the
arithmetic world, however, we believe that the reconstruction problem is more natural to study than
the PAC learning one. One reason is that it seems natural to think of the input for a polynomial as

1For a good background on computational learning theory, see Ref. [KV94b].

96

coming from the uniform distribution and not from some “strange” distribution that PAC learning
algorithms have to deal with. Another reason is that any two polynomials are far from each other,
so any “reasonable” learning algorithm should compute the polynomial exactly.

It is clear that PIT algorithms are strongly related to reconstruction algorithms. E.g., a black-
box algorithm provides a test set for the underlying class of circuits, that is, a set of points that
distinguishes any two different circuits from the class. In other words, black-box PIT algorithms
provide a set of points with the property that evaluating a circuit from the underlying class on all
the points in the set, completely determines the circuit. The problem remains: “how to reconstruct
the circuit from the values that it obtains on a test set?”

Currently, reconstruction algorithms are known for depth-2 circuits, see Refs. [GK87, BT88,
GKS90, KS01] and references within, for depth-3 circuits with bounded top fan-in [Shp09, KS09a] and
for set-multilinear noncommutative formulas [BBB+00, KS06]. It is an interesting question whether
there is a generic way of transforming a black-box PIT algorithm to a reconstruction algorithm. On
the face of it the answer should be negative as a random set should be a good test set and there is no
clear way of using a random set of points to generate circuits. However, by considering PIT algorithms
of a certain type, like the ones suggested by Agrawal [Agr05] and Shpilka and Volkovich [SV09], it
seems possible that one would be able to transform a successful PIT algorithm to a reconstruction
algorithm. Consider, for example, the case of read-once formulas (ROFs). Although a weak model,
it received a lot of attention in the learning community and several randomized learning algorithms
were devised for it [HH91, BHH95, BB98, BC98]. In Shpilka and Volkovich [SV08, SV09] a PIT
algorithms for sums of read-once formulas was given. Consequently, [SV09] obtained a deterministic
quasi-polynomial time learning algorithms for read-once formulas. However, the problem of learning
a sum of read-once formulas, even the sum of two read-once formulas, is still open.

Open Problem 31. Give sub-exponential reconstruction algorithm for the sum of a small number
of read-once arithmetic formulas.

Although there is a clear relation between PIT and reconstruction, it may be the case that we will
have randomized reconstruction algorithms without a corresponding deterministic PIT algorithm.
For example, in [HH91, BHH95, BB98, BC98] randomized polynomial time reconstruction algorithms
for ROFs were given, much before the designed of PIT algorithms for it. In addition, the PIT
algorithm of Shpilka and Volkovich [SV09], that was discovered later, only implies a quasi-polynomial
time reconstruction algorithm due to the size of the hitting set. We note however that the algorithm
of [SV09] has the advantage of being deterministic whereas the previous algorithms [HH91, BHH95,
BB98, BC98] are all randomized.

We now explain the main ideas behind some of the known reconstruction algorithms and discuss
some known hardness results.

5.1 Hardness of Reconstruction

By experience, reconstruction algorithms exist only for classes for which strong lower bounds are
known. It is thus natural to ask whether efficient reconstruction algorithms imply strong lower
bounds for the underlying circuit class. If we could show such a result then we will immediately get
that for classes for which lower bounds are hard to prove (like depth-4 circuits), one cannot expect

97

to obtain an efficient reconstruction algorithm. In the Boolean world such results were first proved
by Valiant [Val84] (for more on hardness of learning see Ref. [KS09c] and references within). In
the arithmetic world much less is known. This is mostly due to the fact that most cryptographic
assumptions that were used to prove hardness of learning do not have counterparts in the arithmetic
world (recall the discussion in Section 3.9). Nevertheless, recently some hardness of reconstruction
results were proved for arithmetic circuits as well.

In Ref. [KS09c], Klivans and Sherstov proved that assuming the hardness of the shortest vector
problem (SVP) for quantum algorithms, no PAC learning algorithm exists for ΣΠΣ circuits. The
f(n)-SVP question is the problem of computing an f(n) multiplicative approximation to the length
of the shortest vector in a given lattice in Rn. Regev constructed a new public-key cryptosystem
based on the assumption that Õ(n1.5)-SVP is hard for quantum computers [Reg09]. Klivans and
Sherstov observed that the decrypting function for Regev’s public-key encryption scheme can be
computed by small ΣΠΣ circuits. Using a lemma of Kearns and Valiant [KV94a], that basically says
that if a decryption function of a secure public key cryptosystem can be computed by a circuit class
C then C does not have efficient learning algorithms, Klivans and Sherstov [KS09c] concluded that
no efficient PAC learning algorithms exist for ΣΠΣ circuits (assuming the security of Regev’s public
key cryptosystem).

Theorem 5.1 ([KS09c]). Assume that polynomial-size ΣΠΣ arithmetic circuits are PAC-learnable
in polynomial time. Then there is a polynomial-time quantum solution to Õ(n1.5)-SVP.

While this Theorem provides a hardness of PAC learning result for ΣΠΣ circuits, it does not
say much about the general reconstruction problem. The main difference between these problems
is that in the case of reconstruction we are allowed to ask for the value of the circuits on inputs
of our choice. Furthermore, in the reconstruction problem we usually consider inputs coming from
the uniform distribution. On the other hand, in the PAC model the goal is to learn the circuit
using random examples that come from some unknown distribution. Specifically, the adversary is
allowed to chose a distribution that is supported on a “strange” set of inputs. Thus, giving a PAC
learning algorithm that works for any distribution may be a more difficult task than reconstructing
the circuit.

Fortnow and Klivans [FK09] show hardness of learning results for arithmetic circuits and formulas
using ideas similar to those of Kabanets and Impagliazzo [KI04].

Theorem 5.2 ([FK09]). Let C be a family of polynomial size arithmetic formulas. Assume that C is
exactly learnable from membership and equivalence queries in polynomial time and that the hypothesis
of the learner is an arithmetic formula. Then there exists a polynomial f ∈ EXPRP such that f 6∈ C.
If we allow both C and the hypothesis to be arithmetic circuits then there exists an f ∈ ZPEXPRP

such that f 6∈ C.

When saying f ∈ EXPRP etc. we mean that there is an EXPRP machine that computes f (when
the input is given in bits).

Sketch. The idea of the proof is similar to the idea behind Theorem 4.5. Assume that there is a
learning algorithm for C, using membership and equivalence queries. Assume further that permanent
is computable by a polynomial size circuit from C. We shall show, using the self-reducibility of
permanent, that this implies that permanent is in ZPPRP. This is done by an iterative construction

98

of circuits for PERMm, permanent of m × m matrices, as follows. When m = 1 this is trivial.
Assume now that we constructed a circuit for PERMm. To construct a circuit for PERMm+1, run
the learning algorithm for C with PERMm+1 as the objective polynomial. The problem is, of course,
to answer membership and equivalence queries. Using the circuit for PERMm, we can easily answer
membership queries for PERMm+1. Equivalence queries can be simulated using randomness: since
the constructed circuit is small, its degree is not too high, which implies that a random input will
be a counterexample. We can thus learn a small circuit for PERMn.

To conclude the proof we note the following. If permanent has polynomial size circuits from C and
if EXP ⊆ C (otherwise there is nothing to prove), then, as in the proof of Theorem 4.5, permanent
is complete for EXP. Hence EXP ⊆ ZPPRP. By padding this implies that EE ⊆ ZPEXPRP (where

EE = DTIME(22
O(n)

)). As EE contains functions with super-polynomial circuit complexity, so does
ZPEXPRP.

We end this section by asking whether a similar result can be proved for VNP.

Open Problem 32. Prove that if an arithmetic circuit class C is learnable then the permanent does
not have polynomial size circuits from C.

5.2 Interpolation of Sparse Polynomials

Similarly to the PIT algorithms from Section 4.4, many different interpolation algorithms were
designed for the class of sparse polynomials (see, e.g., [BT88, GKS90, KS01] and references within).
As before, we describe the approach of Klivans and Spielman [KS01]. The PIT algorithm given
in Section 4.4 can be easily extended to an interpolation algorithm. Assume that the unknown
polynomial is f(x1, . . . , xn) with deg(f) < r. Recall the substitution xi = yk

i mod p, for a large
enough prime p. The proof of Theorem 4.12 shows that for some k, each monomial of f is mapped

uniquely to a monomial of f̂
def
= f(y, yk

1 mod p, . . . , yk
n−1 mod p). By evaluating this polynomial

on deg(f̂) + 1 points we can recover all the coefficients of f . It remains to find the monomials
corresponding to each of the coefficients. To do so let γ 6∈ {0, 1} be some field element. Consider the

polynomials fi
def
= f(x1, . . . , xi−1, γ · xi, xi+1, . . . , xn). As before, we can interpolate the polynomials

f̂i = fi(y, y
k1 mod p, . . . , yk

n−1 mod p). The important observation is that the monomials of f̂i are the
same as the monomials of f̂ and the only difference is that the coefficients of the monomials that
resulted from monomials containing xi changed. By comparing the coefficients of f̂i and those of f̂ ,
we can easily recover the monomials of f , thus obtaining the following theorem.

Theorem 5.3 ([KS01]). In time polynomial in n,m, r and log(|F|), we can output a test set of point
that given the values of a degree r n-variate polynomial over F with at most m monomials at every
point in the set, we can find the coefficients and monomials of the polynomial in polynomial time. If
F = R, then every entry of each point in the set has bit-length at most O(log(nr)). When F is finite
of size smaller than (nr)6 the entries of the points come from the smallest algebraic extension field
of F of size at least (nr)6.

99

5.3 Learning via Partial Derivative

Beimel et al. [BBB+00] gave learning algorithms that use membership and equivalence queries for
several classes of Boolean functions. The output of the algorithm is a multiplicity automaton (see
definition below). They mainly considered Boolean function classes but they also applied their
algorithms to the class of low degree polynomials over finite fields, and even to a model that can
be thought of as set-multilinear depth-3 circuits. In Ref. [KS06] it was noticed that this learning
algorithm can actually learn any class of arithmetic circuits that compute polynomials whose space
of partial derivatives has low dimension. In this section we define the model of multiplicity automata,
give the algorithm of Beimel et al. [BBB+00] and explain the connection to partial derivatives.

Definition 5.1. A multiplicity automaton A of size s over F consists of a vector γ = (γ1, . . . , γs) ∈ Fs
and a set of matrices {Aσ}σ∈F, where each Aσ is an s× s matrix over F. The output of A on input

x = (x1, . . . , xn) ∈ Fn is defined to be the first coordinate of the vector2
(∏1

i=nAxi

)
γ.

Intuitively, each matrix Aσ corresponds to the transition matrix of the automaton for the symbol
σ ∈ F. Iterative matrix multiplication keeps track of the weighted sum of paths from state i to state
j. The first row of the iterated product corresponds to transition values starting from the initial
state and γ determines the acceptance criteria. This definition can be extended to any input length
and not just to n-tuples, but we restrict our discussions to inputs from Fn.

Assume that a polynomial f(x1, . . . , xn) with individual degrees bounded by r can be computed
by a multiplicity automaton of size s. Let α0, . . . , αr be distinct field elements. Let A(z) be the
unique s × s matrix whose entries are degree r polynomials in the variable z such that for every
αi it holds that A(αi) = Aαi . One can construct A(z) by interpolation. Observe that this implies
that f(x1, . . . , xn) = (A(xn) · · ·A(x1) · γ)1. This representation immediately connects multiplicity
automata to read-once oblivious algebraic branching programs. Specifically, f can be computed by
an ABP of width s, such that the only variable labelling edges between the i’th level and the i+ 1’st
level is xi. An important notion related to multiplicity automata is that of Hankel matrices.

Definition 5.2. Let f : Fn → F be a polynomial. We construct a matrix H whose rows and columns
are indexed by strings3 in F≤n in the following way. For a string x, define |x| to be the length of x,
for example, |01| = 2. For two strings x, y, define the (x, y) entry of H to be f(x ◦ y) if |x|+ |y| = n
and 0 otherwise. The resulting matrix H is called the Hankel matrix of f . Define Hk to be the k’th
block of H, i.e., Hk is the sub-matrix of H define by all rows x so that |x| = k and all columns y so
that |y| = n− k.

The following key fact relates the rank of the Hankel matrix of a polynomial with the size of a
multiplicity automaton computing it.

Theorem 5.4. The rank of the Hankel matrix of f (over F) is equal to the size of the smallest
multiplicity automaton computing f .

2We denote Axn ·Axn−1 · . . . ·Ax1 by
∏1
i=nAxi .

3 The set F≤n is the set of strings of length at most n over the alphabet F. For practical purposes, if F is too large
then we can consider the Hankel matrix with respect to strings in S≤n for some S ⊆ F. As long as |S| > deg(f) the
rest of the discussion remains the same.

100

Sketch. We only prove one direction here as it will be the one used in our algorithms. Let H be the
Hankel matrix of an n-variate polynomial f and assume that rank(H) = s. Let a1, a2, . . . , as ∈ F≤n
be such that the rows indexed by them form a basis to the row-space of H (we can assume that
f 6= 0). Without loss of generality, assume that a1 is the empty string, denoted a1 = ε. Set
γ = (f(a1), . . . , f(as)) where if |ai| 6= n then we set f(ai) = 0. For every σ ∈ F, define the matrix
Aσ as follows: the i’th row of Aσ is the unique vector (α1, . . . , αs) satisfying Hai◦σ =

∑
i∈[s] αi ·Hai ,

where Hw is the row of H indexed by w. One can now prove by induction on |w| that for every
w ∈ F≤n it holds that (Aw · γ)i = f(ai ◦ w).

The learning algorithm works in stages. In each stage it learns another row of the Hankel matrix
that is independent of the rows learnt so far. When a basis to the row space of the matrix is obtained
the algorithm constructs a multiplicity automata that has the same Hankel matrix as the underlying
polynomial, which is what we are after. More specifically, at the beginning of the k’th iteration, the
algorithm holds a set of rows X = {x1, . . . , xk} ⊆ F≤n and a set of columns Y = {y1, . . . , yk} ⊆ F≤n.
For a string z, let Ĥz be the restriction of the row Hz to the k coordinates in Y . Given z and Y ,
the vector Ĥz can be computed using k = |Y | membership queries. It will hold that Ĥx1 , . . . , Ĥxk

are linearly independent. Using these vectors the algorithm constructs a hypothesis h, in a manner
similar to the proof of Theorem 5.4, and asks an equivalence query. A counterexample to h leads
to adding a new element to both X and Y , in a way that preserves the above properties. This
immediately implies that the number of iterations is bounded by rank(H). We shall now give a more
detailed description of the algorithm. To simplify the algorithm we redefine f so that f(ε) = 1 (f
remains zero on all other strings of length different than n).

1. Set x1 = y1 = ε, X = Y = {ε} and k = 1. At this point, Ĥε has one coordinate which equals
1.

2. Construct a hypothesis h, as in the proof of Theorem 5.4. Namely, set γ = (f(x1), . . . , f(xk)).
For every4 σ ∈ F, construct the matrix Âσ as follows: its i’th row is the coefficients of the vector
Ĥxi◦σ when expressed as a linear combination of the vectors Ĥx1 , . . . , Ĥxk . This is possible as
Ĥx1 , . . . , Ĥxk are linearly independent vectors in Fk. These matrices, together with γ, define a
multiplicity automaton and our hypothesis h is the function computed by this automaton.

3. Ask whether h = f . If the answer is YES then halt and output h. Otherwise the answer is NO
and we obtain a counterexample z (this is the equivalence query). We now find a prefix w ◦ σ
of z such that there exist constants α1, . . . , αk ∈ F satisfying

∑
i∈[k] αiĤxi = Ĥw but for some

y ∈ Y it holds that
∑

i∈[k] αiĤxi(σ ◦ y) 6= Ĥw(σ ◦ y). Namely, the way in which the row w is

spanned by Ĥx1 , . . . , Ĥxk , cannot be extended to the column σ ◦ y. Now, set X ← X ∪ {w}
and Y ← Y ∪ {σ ◦ y}. Repeat Step 2.

The correctness of the algorithm is implied by the following two claims that we leave to the
reader. The proof of the first claim is by induction on the structure of z and it uses essentially the
same kind of arguments as the proof of Theorem 5.4.

4Actually, if f has degree at most r in each variable then we only need to do so for all σ ∈ S where S ⊆ F is of size
r + 1.

101

Claim 5.1. Let z be a counterexample to h found in Step 3 (i.e., f(z) 6= h(z)). Then, there exists
a prefix w ◦ σ having the required properties.

The second claim follows by construction.

Claim 5.2. At each step the rows Ĥx1 , . . . , Ĥxk are linearly independent.

Concluding, we obtain the following theorem.

Theorem 5.5 ([BBB+00]). Let f : Fn → F be a polynomial of individual degrees bounded by r such
that rank(H(f)) = R over F, where H(f) is the Hankel matrix of f . Then, f is exactly learnable by
the above algorithm in time poly(n, r,R) from equivalence and membership queries.

To explain the relation between Hankel matrix and partial derivatives we introduce some nota-
tions. For a function f(x1, . . . , xn) and k ≤ n, define ∂k(f) = { ∂f

∂M |M is a monomial in x1, ..., xk }
and rankk(f) = dim (span (∂k(f))).

Theorem 5.6 ([KS06]). Let f(x1, . . . , xn) be a degree r polynomial. Then for every k ≤ n, the
k’th block of the Hankel matrix H(f) of f admits rank(Hk(f)) ≤ rankk(f). If f is multilinear then
equality holds.

The proof of the theorem is quite easy and relies on Taylor expansion of a polynomial and
therefore we omit it. Combining Theorems 5.5 and 5.6 we get learning algorithms for several circuit
classes.

Theorem 5.7 (Learnability of depth-3 circuits). Let f be computed by a set-multilinear ΣΠΣ circuit
with s product gates over n variables. Then f is learnable, from membership and equivalence queries,
in time poly(n, s). If f is computed by a ΣΠΣ circuit with s multiplication gates each of degree at
most r then f is learnable in time poly(n, 2r, s).

The prove of the theorem is immediate once we notice the following. In the case of set-multilinear
circuits,

∑
k∈[n] rankk(f) ≤ ns. In the case of general ΣΠΣ circuits,

∑
k∈[n] rankk(f) ≤ 2rns.

Finally, we obtain a learning algorithm for set-multilinear noncommutative formulas (this gener-
alizes the first case of Theorem 5.7).

Theorem 5.8. Let f(X1, . . . , Xr) be a set-multilinear polynomial in the variables X1, . . . , Xr, the
size of each |Xi| is n. Assume that f is computed by a set-multilinear noncommutative formula of
size s. Then f can be learned in time poly(n, r, s).

The proof follows since
∑

k∈[n] rankk(f) ≤ ns (see the proof of Theorem 3.6 in Section 3.4).

5.4 Reconstruction of Depth-3 Circuits

So far we have seen learning algorithms for classes of circuits computing polynomials whose partial
derivatives span a low-dimensional space (sparse polynomials have this property as well). In this
section we will give an example of a reconstruction algorithm for the class of ΣΠΣ(k) circuits. This
class can compute polynomials whose partial derivatives space has an exponentially large dimension.

102

For example, the polynomial f = (x1 + x2) · (x3 + x4) · · · (xn−1 + xn) satisfies rankk(f) ≥
(n/2
k

)
.

The reconstruction algorithm presented returns a ΣΠΣ circuit. When the “original” circuit is
multilinear, the algorithm outputs a multilinear ΣΠΣ(k) circuit and runs in polynomial time. When
the circuit is not multilinear, the algorithm returns a ΣΠΣ circuit with quasi-polynomially many
multiplication5 gates and runs in quasi-polynomial time. This algorithm is very different from the
previous ones and it heavily relies on Theorem 4.17.

Theorem 5.9 ([KS09a]). Let f be an n-variate polynomial computed by a ΣΠΣ(k) circuit of degree
d over F. Then there is a reconstruction algorithm for f , that runs in time poly(n) · exp(log(|F|) ·
log(d)O(k3)), and outputs a ΣΠΣ(K, d) circuit for f , where K = exp(log(d)k). When |F| = O(d5) the
algorithm may ask queries from a polynomial size algebraic extension field of F.

In the case that f can be computed by a multilinear ΣΠΣ(k) circuit, there is a reconstruction

algorithm that runs in time (n+ |F|)2O(k log k)
and outputs a multilinear ΣΠΣ(k) circuits for it. When

|F| < n5 The algorithm may ask queries from a polynomial size algebraic extension field of F.

The rest of the section is organized as follows. First we will explain the idea behind the algorithm
of Shpilka [Shp09] that works for circuits with two multiplication gates (k = 2) and then the extension
of Ref. [KS09a] that works for the case of k = O(1) multiplication gates.

5.4.1 The Case k = 2

Let us start with the simplest case k = 1. Here the circuit is simply a product of linear functions so
all we need to do is to find its irreducible factors. This is easily done by using the black-box factoring
algorithm of Kaltofen and Trager [KT90].

We would like to extend this approach for the case of two product gates. Obviously, we run into
difficulties as the circuit itself can be irreducible. Furthermore, even if it is reducible then there is
no reason that we could recover the linear functions from its irreducible factors. To overcome this
difficulty [Shp09] had the following idea. Let Φ = M1 + M2 be the unknown circuit, each Mi is a
product gate. Look for a linear function ` that is a factor of M1 and not of M2 (if such a function
exists). Consider the circuit Φ|`=0. This circuit has exactly one multiplication gate M2|`=0 and so
we can recover all its irreducible factors. Now, this still does not give us M2 but rather only its
restriction to the space {x : `(x) = 0}. To overcome this, Shpilka [Shp09] actually looks for many
different functions `1, . . . , `t that are linearly independent and divide M1 and not M2. The algorithm
then computes M2|`1=0, . . . ,M2|`t=0 and from these t different circuits reconstructs M2. Once M2 is
known we can look at Φ−M2 and recover M1 using factoring.

There are, of course, many problems with this approach. The first is ensuring that such linear
functions even exist. If the rank of the circuit is small, for example, then they do not exist. The
second problem is that even if such functions exist, we need to find them, and, after all, the space of
linear functions is exponentially large. The third problem is that even if we overcame the first two
obstacles, we still need to reconstruct M2 from the different circuits M2|`i=0.

We now explain how to overcome each of these difficulties. As the algorithm is very complicated

5By generalizing the notion of a multiplication gate one can view the output of the algorithm as a sum of k generalized
multiplication gates (see Ref. [KS09a]).

103

and contains many details, we only sketch the ideas and avoid small (yet delicate) points that are
dealt with in Ref. [Shp09]. In what follows, to ease the reading, we assume that Φ is simple, namely,
that its product gates have no common factors. The algorithm, of course, must deal with the non-
simple case.

We first explain how the algorithm works when the rank of Φ is larger than O(log2(n)). We
would like to find linear functions `1, . . . , `t, t = O(log n), such that all the `i’s divide M1 but
none of them divides M2. To do this, instead of considering the problem over Fn, we restrict the
inputs to the circuits to some random linear space V ⊂ Fn of dimension dim(V) = D. It is not
very difficult to show that with high probability, Φ|V still has high rank and that the functions `i|V
still do not divide M2|V . Now, since the dimension of the space is rather small we can actually
“guess”6 the functions `1|V , . . . , `t|V . Hence, we can assume that we have `1|V , . . . , `t|V . We can
now factor each of the circuits M2|V,`1|V =0, . . . ,M2|V,`t|V =0. At this point a new problem arises:
how do we “glue” those gates together to get M2|V . Let us look more closely at this question. By
applying an invertible linear transformation, we can assume without loss of generality that `i = xi
for every i. What we actually have is M2|V , except that for each i ∈ [t] someone reveals all its linear
factors but erases xi from it. The consequence of setting xi = 0 is that different linear functions can
become identical after this setting. It is not clear how to combine the different factors of the circuits
M2|V,xi=0 together. Shpilka [Shp09] overcomes this by showing that (for this choice of t) there must
exist xi and xj and a linear factor L of M2|V such that the multiplicity of L in M2|V is equal to
its multiplicity in M2|V,xi=0 and to its multiplicity in M2|V,xj=0. This means that by inspecting the
factors of M2|V,xi=0 and M2|V,xj=0 we can find this function L (or some other function with the same
property) as follows. By considering the restriction L|xi=0 we can recover the coefficients of xj in L,
and similarly by considering L|xj=0 we can recover the coefficients of xi (this does not work when L
depends only on xi and xj ; this “bad” event happens with very small probability over the choice of
V). Now we can remove L from M2|V and recursively learn M2|V /L. The proof of the existence of
such a function L is very similar to the proof of Theorem 4.17 so we skip it. Now, given M2|V we
can find M1|V by factoring the polynomial Φ|V −M2|V .

At the end of the above argument we have the circuit Φ|V . The problem is of course finding the
circuit Φ itself. Here we use the structural theorem (Theorem 4.17) to claim that the circuit that
we found is unique. Namely, if Ψ = N1 + N2 is another ΣΠΣ(2) circuit computing Φ|V then either
N1 = M1|V or N2 = M1|V . This follows from the observation that M1|V + M2|V − N1 − N2 ≡ 0
and the fact that rank(Φ|V) ≥ R(4, r). Knowing that the circuit is unique, we can “lift” it to Fn as
follows. Repeat the learning algorithm and learn each of the circuits Φ|Vi where Vi = span(V ∪{ei})
and ei is the i’th basis vector. Denote Φ|Vi = M i

1 +M i
2. The uniqueness of Φ|V guarantees that we

can simply “glue” together the linear functions in the different M i
1’s whose restriction gives the same

linear function in M1|V (as we picked V at random, different linear functions in Φ will be mapped to
“far away” functions in Φ|V). This concludes the algorithm for the case that the rank of Φ is high.
In this case the algorithm actually returns a ΣΠΣ(2) circuit.

We now turn to the low rank case that has a different algorithm, but of roughly the same structure.
As before we restrict the circuit to a random low dimensional space. Then we find a representation
of Φ|V as a polynomial in a small set of linear functions. This can be done, as the linear functions
in the circuit have low rank. Assume that we found a representation Φ|V = f(`1, . . . , `ρ). What we

6By “guess” we mean that we go over all possibilities, for each one we run the reconstruction algorithm, and at the
end check which of the solutions that we found is the correct one using a PIT algorithm.

104

do next is find a representation of the form Φ|Vi = f(`i1, . . . , `
i
ρ) where `ij |V = `j , and the Vi’s are

defined as before. The requirement `ij |V = `j guarantees that the `ij ’s are “consistent” with each
other. It is not hard to prove that such a representation exists (given that ρ = rank(Φ)). Once we
have the `ij ’s, we can again combine them together and obtain a representation Φ = f(L1, . . . , Lρ)
for some linear functions. This is a very rough sketch and the interested reader is referred to [Shp09]
for more details. In the low rank case the algorithm does not return a ΣΠΣ(2) circuit.

In the case of multilinear ΣΠΣ(2) circuits, [Shp09] gives a polynomial time algorithm. The main
difference is that the “critical” rank is now a constant and not poly-logarithmic. A delicate point
is that the space V cannot be random as the restriction of a multilinear polynomial to a random
subspace is usually not multilinear. Nevertheless, one can show that instead of choosing a random V
it is enough to set variables to constants at random (leaving a constant number of variables “alive”).
As the dimension of the resulting subspace is constant, the algorithm runs in polynomial time. It is
also interesting that in this case the algorithm actually returns a multilinear ΣΠΣ(k) circuit.

5.4.2 The Case of General k

We now explain the idea behind the algorithm of [KS09a] for reconstructing ΣΠΣ(k) circuits. Before
we describe their algorithm let us explain the difficulties in extending the algorithm above for the
case k > 2. The algorithm for ΣΠΣ(2) circuits has the following three steps. (a) Restrict the circuit
to a low dimensional space. (b) Either learn one multiplication gate at a time in the case of high
rank, or find a representation of the circuit as a function in a small number of linear forms in the
case of low rank. (c) “Lift” the circuit from the subspace to the whole space. Several problems occur
when trying to make this approach work when we have many product gates. First of all, it may be
the case that the circuit is of high rank, yet some of its multiplication gates share many common
linear functions. For example, this can happen if the circuit is a sum of a high rank circuit with a
low rank circuit. In this case it is not clear how to use the previous algorithm. Let us ignore this
problem for now and consider the next difficulty. Previously, in the high rank case we learnt each
product gate separately, by restricting the circuit to a subspace on which one of the gates vanishes.
It is not clear that we can do the same when we have more than two gates. Finally, even if we do
learn Φ|V , it is not obvious that we can lift it as it involves both “high rank” parts and “low rank”
parts. Specifically, the representation of Φ|V is not unique and therefore it is not clear that the
circuits Φ|Vi can be “glued” together (this is closely related to the first problem that we discussed).

We now explain how Karnin and Shpilka [KS09a] handle these problems. The main idea is
to define a more robust notion of a product gate. They define a distance function between gates

∆(M1,M2)
def
= rank((M1 + M2)/ gcd(M1,M2)). In words, the distance between two gates is the

rank of their sum after we remove their common linear factors. As it turns out, ∆ obeys the triangle
inequality and so can be viewed as giving a metric for product gates. Furthermore, it also make sense
to define (in the same manner) the function ∆(M1, . . . ,Mt). They use this metric to cluster product
gates in a way that any two clusters are far. That is, they first partition [k] to t sets I1, . . . , It and
then define Φj =

∑
i∈Ij Mi. Clearly, Φ =

∑
j∈[t] Φj . The important property that the Φj ’s satisfy is

that rank(Φj) is small but for any j1 6= j2, i1 ∈ Ij1 and i2 ∈ Ij2 it holds that ∆(Mi1 ,Mi2) is large.
In words, the rank of the sum of the gates in each of the partitions is small (after removing their
greatest common divisor) and any two clusters are far from each other. An important conclusion of
this definition is that it guarantees uniqueness. Indeed, if Φ =

∑
j∈J Ψj is another representation of

105

Φ as a sum of at most k far clusters, then it must be the case that |J | = t and after permuting the
indices, Φj = Ψj . We call each Φj a generalized multiplication gate (with this definition each low-
rank circuit is a single generalized product gate). Another implication is that for a random subspace
V (of polylog dimension), with high probability Φ|V =

∑
j∈[t] Φj |V is the unique representation of

Φ|V as a sum of generalized multiplication gates. This property is very important because if we can
learn Φ|V then using the uniqueness we can hope to lift each Φj separately to Fn as was done in the
case k = 2.

The second problem that we need to deal with is how to learn Φ|V . For this, Karnin and
Shpilka [KS09a] show that if we pick a subspace V of a high enough dimension (polylog(n) suffices)
at random then there exists a reconstruction tree of depth at most k for Φ|V . A reconstruction tree
is a tree whose nodes are labelled with subspaces of V having the following four properties. (1) The
root is labelled with V . (2) If U is a child of W then U is a subspace of W of co-dimension one.
(3) The subspaces in the children of each node span the subspace in the node. (4) There exists a
generalized product gate Φj of Φ such that for each leaf U of the tree Φj |U 6≡ 0, but all the other
generalized product gates vanish on U . Now, if {Ui} are the children of W then from {Φj |Ui} we can
reconstruct Φj |W , by going bottom up. Indeed, if U labels a leaf then we can reconstruct Φj |U by
simple factoring, as all the other gates vanish on U . Then, we reconstruct Φj |U for all subspaces U
that label nodes just above the leaves (using similar ideas to the case k = 2), and so forth. Eventually,
we can reconstruct Φj |V . Then, we consider Φ|V − Φj |V and repeat the same argument until we
reconstruct the other generalized multiplication gates. As in the case k = 2, we find the adequate
reconstruction trees by simply trying out all possibilities. As the dimension of V is poly-logarithmic
and k is a constant going over all trees takes quasi-polynomial time.

Once we find Φ|V , using the fact that the representation is unique, we can apply the same ideas
as in the case k = 2 to lift the representation to Fn. It is not hard to show that this algorithm
outputs a representation of Φ as a sum of at most k generalized multiplication gates.

We shall not elaborate more on this algorithm but rather explain why this can be viewed as a
generalization of the algorithm for the case k = 2. When a ΣΠΣ(2) circuit has a high rank then
we view it as a sum of two clusters (each gate is clustered only with itself). On the other hand, in
the low rank case we view the circuit as a single generalized multiplication gate and then learn this
gate. Thus, the algorithm for reconstructing ΣΠΣ(2) circuits either returns two clusters in the case
of high rank or one cluster in the case of low rank.

In the case of multilinear ΣΠΣ(k) circuits, similar arguments are used and again Karnin and
Shpilka [KS09a] manage to reconstruct such circuits in polynomial time (with k appearing in the
exponent of course).

5.5 Concluding Remarks

In this Section we discussed the reconstruction problem of arithmetic circuits. We saw some hardness
results and described a few algorithms. We find the state of the art, however, to be not satisfactory
in both directions. Specifically, we expect stronger hardness results to hold. E.g., that reconstruction
implies lower bounds for more natural polynomials than those guaranteed by Theorem 5.2 (see e.g.
Open Problem 32). The situation with reconstruction algorithms is even more depressing. We believe
that one should be able to reconstruct circuits in classes for which PIT algorithms are known. The

106

problem of reconstructing sums of read-once formulas, Open Problem 31, is an interesting question
in this direction. The special case of reconstructing read-once formulas is known but was not covered
in this survey (the interested reader is referred to [HH91, BHH95, BB98, BC98, SV08, SV09]).

107

Acknowledgements

We thank Michael Forbes for his helpful comments that improved the presentation and Madhu Sudan
for encouraging us to write this monograph.

108

Bibliography

[Aar08] S. Aaronson. Arithmetic natural proofs theory is sought, 2008.
http://scottaaronson.com/blog/?p=336.

[AB03] M. Agrawal and S. Biswas. Primality and identity testing via Chinese remaindering.
Journal of the ACM, 50(4):429–443, 2003.

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the
25th FSTTCS, vol. 3821 of LNCS, pages 92–105. 2005.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781–
793, 2004.

[AL50] S. A. Amitsur and J. Levitzki. Minimal identities for algebras. Proceedings of the Amer-
ican Mathematical Society, 1:449–463, 1950.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[Alo99] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8:7–
29, 1999.

[AM07] V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and poly-
nomial identity testing. In Proceedings of the 18th ISAAC, pages 800–811. 2007.

[AM08] V. Arvind and P. Mukhopadhyay. Derandomizing the isolation lemma and lower bounds
for circuit size. In APPROX-RANDOM, pages 276–289. 2008.

[AMS08] V. Arvind, P. Mukhopadhyay, and S. Srinivasan. New results on noncommutative and
commutative polynomial identity testing. In Proceedings of the 23rd Annual CCC, pages
268–279. 2008.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual FOCS, pages 67–75. 2008.

109

[AvMV10] M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity
testing for multilinear constant-read formulae. Electronic Colloquium on Computational
Complexity (ECCC), (135), 2010.

[BB98] D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with
exponentiation. Journal of Computer and System Sciences, 56(1):112–124, 1998.

[BBB+00] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. Journal of the ACM, 47(3):506–530,
2000.

[BC98] N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel.
SIAM Journal on Computing, 27(2):401–413, 1998.

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer,
1997.

[BCSS97] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer,
1997.

[BCW80] M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence of free boolean graphs can
be tested in polynomial time. Information Processing Letters, 10:80–82, 1980.

[BD80] M. R. Brown and D. P. Dobkin. An improved lower bound on polynomial multiplication.
IEEE Transactions on Computers, 29(5):337–340, 1980.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[BHH95] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formu-
las. SIAM Journal on Computing, 24(4):706–735, 1995.

[BHLV09] M. Bläser, M. Hardt, R. J. Lipton, and N. K. Vishnoi. Deterministically testing sparse
polynomial identities of unbounded degree. Information Processing Letters, 109(3):187–
192, 2009.

[Blä99] M. Bläser. A 5/2n2-lower bound for the rank of n×n-matrix multiplication over arbitrary
fields. In Proceedings of the 40th Annual FOCS, pages 45–50. 1999.

[BS83] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Compter
Science, 22:317–330, 1983.

[BT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual STOC, pages 301–309. 1988.

[Bür99] P. Bürgisser. On the structure of valiant’s complexity classes. Discrete Mathematics &
Theoretical Computer Science, 3(3):73–94, 1999.

[BvH82] A. Borodin, J. von zur Gathen, and J. E. Hopcroft. Fast parallel matrix and GCD
computations. Information and Control, 52(3):241–256, 1982.

110

[BW05] A. Bogdanov and H. Wee. More on noncommutative polynomial identity testing. In
Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pages
92–99. 2005.

[CCL08] J. Cai, X. Chen, and D. Li. A quadratic lower bound for the permanent and determinant
problem over any characteristic != 2. In Proceedings of the 40th Annual STOC, pages
491–498. 2008.

[Cha98] B. Chazelle. A spectral approach to lower bounds with applications to geometric search-
ing. SIAM Journal on Computing, 27(2):545–556, 1998.

[CK00] Z. Chen and M. Kao. Reducing randomness via irrational numbers. SIAM Journal on
Computing, 29(4):1247–1256, 2000.

[CKSU05] H. Cohn, R. D. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for
matrix multiplication. In Proceedings of the 46th Annual FOCS, pages 379–388. 2005.

[CRS95] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation
with applications to perfect matching and related problems. SIAM Journal on Comput-
ing, 24(5):1036–1050, 1995.

[CS07] S. Chien and A. Sinclair. Algebras with polynomial identities and computing the deter-
minant. SIAM Journal on Computing, 37:252–266, 2007.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5:618–623, 1976.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[CU03] H. Cohn and C. Umans. A group-theoretic approach to fast matrix multiplication. In
Proceedings of the 44th Annual FOCS, pages 438–449. 2003.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression.
Journal of Symbolic Computation, 9:251–280, 1990.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978.

[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2006.

[DSY09] Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293, 2009.

[Dvi10] Z. Dvir. On matrix rigidity and locally self-correctable codes. In Proceedings of the 25th
Annual CCC, pages 291–298. 2010.

[EK66] M. Edelstein and L. M. Kelly. Bisecants of finite collections of sets in linear spaces.
Canadanian Journal of Mathematics, 18:375–280, 1966.

111

[FK09] L. Fortnow and A. R. Klivans. Efficient learning algorithms yield circuit lower bounds.
Journal of Computer System Science, 75(1):27–36, 2009.

[vzG87] J. von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. Journal of
Symbolic Computation, 4(2):137–172, 1987.

[vzG06] J. von zur Gathen. Who was who in polynomial factorization. In ISSAC, page 2. 2006.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 1999.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, 1986.

[GK87] D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with poly-
nomially bounded permanents is in NC (extended abstract). In Proceedings of the 28th
Annual FOCS, pages 166–172. 1987.

[GK98] D. Grigoriev and M. Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In Proceedings of the 30th Annual STOC, pages 577–582. 1998.

[GKS90] D. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields. SIAM Journal on Computing,
19(6):1059–1063, 1990.

[GR00] D. Grigoriev and A. A. Razborov. Exponential complexity lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. Applicable Algebra in Engi-
neering, Communication and Computing, 10(6):465–487, 2000.

[GR08] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual STOC, pages 6–20. 1986.

[H̊as90] J. H̊astad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654, 1990.

[HH91] T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended
bases. In Proceedings of the 4th Annual COLT, pages 326–336. 1991.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43:439–561, 2006.

[HMU00] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Pearson Education, 2nd edition,
2000.

[HS80a] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th annual STOC, pages 262–272. 1980.

112

[HS80b] J. Heintz and M. Sieveking. Lower bounds for polynomials with algebraic coefficients.
Theoretical Computer Science, 11(3):321–330, 1980.

[HWY10a] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits and the sum-
of-squares problem. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing (STOC), pages 667–676. 2010.

[HWY10b] P. Hrubeš, A. Wigderson, and A. Yehudayoff. Relationless completeness and separations.
In Proceedings of the 25th Conference on Computational Complexity, pages 280–290.
2010.

[HY09a] P. Hrubeš and A. Yehudayoff. Arithmetic complexity in algebraic extensions. Manuscript,
2009.

[HY09b] P. Hrubeš and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. CoRR,
abs/0907.2621, 2009.

[HY09c] P. Hrubeš and A. Yehudayoff. Monotone separations for constant degree polynomials.
Information Processing Letters, 110(1):1–3, 2009.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponen-
tial time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: deran-
domizing the XOR lemma. In Proceedings of the 29th STOC, pages 220–229. 1997.

[JQS09] M. Jansen, Y. Qiao, and J. Sarma. Deterministic identity testing of read-once algebraic
branching programs. CoRR, abs/0912.2565, 2009.

[JS80] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations
over semi-rings. Technical Report CRS-58–80, University of Edinburgh, 1980.

[Kal85] K. Kalorkoti. A lower bound for the formula size of rational functions. SIAM Journal of
Computing, 14(3):678–687, 1985.

[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness in Computation, vol. 5 of Advances in Computing Research, pages
375–412. 1989.

[Kal03] E. Kaltofen. Polynomial factorization: A success story. In ISSAC, pages 3–4. 2003.

[Kam05] M. Kaminski. A lower bound on the complexity of polynomial multiplication over finite
fields. SIAM Journal on Computing, 34(4):960–992, 2005.

[Kay07] N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis,
Indian Institute of Technology, Kanpur, India, 2007.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

113

[KMSV10] Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity
testing of depth 4 multilinear circuits with bounded top fan-in. In Proceedings of the
42nd Annual STOC, pages 649–658. 2010.

[Koi10] P. Koiran. Arithmetic circuits: The chasm at depth four gets wider. CoRR,
abs/1006.4700, 2010.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual STOC, pages 216–223. 2001.

[KS06] A. Klivans and A. Shpilka. Learning restricted models of arithmetic circuits. Theory of
Computing, 2(10):185–206, 2006.

[KS07] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007.

[KS08] Z. S. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of
depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual
CCC, pages 280–291. 2008.

[KS09a] Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In Proceedings of the 24th Annual CCC, pages 274–285. 2009.

[KS09b] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In
Proceedings of the 50th Annual FOCS, pages 198–207. 2009.

[KS09c] A. R. Klivans and A. A. Sherstov. Cryptographic hardness for learning intersections of
halfspaces. Journal of Computer and System Sciences, 75(1):2–12, 2009.

[KT90] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

[KU08] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In Pro-
ceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS),
pages 146–155. 2008.

[KUW86] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6:35–48, 1, 1986.

[KV94a] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM, 41(1):67–95, 1994.

[KV94b] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA, USA, 1994.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic meth-
ods for interactive proof systems. Journal of the ACM, 39(4):859–868,
1992.

114

[Lov79] L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, 1979.

[LV98] D. Lewin and S. Vadhan. Checking polynomial identities over any field: Towards a
derandomization? In Proceedings of the 30th Annual STOC, pages 428–437. 1998.

[Mor73] J. Morgenstern. Note on a lower bound on the linear complexity of the fast fourier
transform. Journal of the ACM, 20(2):305–306, 1973.

[Mor96] P. Morandi. Graduate Texts in Mathematics 167: Field and Galois Theory. Springer-
Verlag, New York, 1996.

[MR04] T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent
problem. International Mathematics Research Notices, 79:4241–4253, 2004.

[MS01] K. Mulmuley and M. A. Sohoni. Geometric complexity theory i: An approach to the P
vs. NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

[MS08] K. Mulmuley and M. A. Sohoni. Geometric complexity theory ii: Towards explicit
obstructions for embeddings among class varieties. SIAM Journal on Computing,
38(3):1175–1206, 2008.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[Nis91] N. Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd
Annual STOC, pages 410–418. 1991.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer System
Sciences, 49(2):149–167, 1994.

[NW96] N. Nisan and A. Wigderson. Lower bound on arithmetic circuits via partial derivatives.
Computational Complexity, 6:217–234, 1996.

[Raz87] A. A. Razborov. Lower bounds for the size of circuits with bounded
depth with basis {∧,⊕}. Matematicheskie Zametki, pages 598–607, 1987.
in Russian.

[Raz03] R. Raz. On the complexity of matrix product. SIAM Journal on Computing, 32(5):1356–
1369, 2003.

[Raz06] R. Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(1):121–135, 2006.

[Raz08] R. Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing (STOC), pages 711–720. 2008.

[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. Journal of the ACM, 56(2), 2009.

115

[Raz10] R. Raz. Tensor-rank and lower bounds for arithmetic formulas. In Proceedings of the
42nd Annual STOC, pages 659–666. 2010.

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM, 56(6), 2009.

[RR97] A. A. Razboeov and S. Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative
models. Computational Complexity, 14(1):1–19, 2005.

[RSY08] R. Raz, A. Shpilka, and A. Yehudayoff. A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM Journal on Computing, 38(4):1624–1647, 2008.

[RY08a] R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Com-
putational Complexity, 17(4):515–535, 2008.

[RY08b] R. Raz and A. Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. In Proceedings of the 49th Annual FOCS, pages 273–282. 2008.

[RY09] R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity, 18(2):171–207, 2009.

[Rys63] H. J. Ryser. Combinatorial Mathematics, vol. 14. Carus Mathematical Monographs,
1963.

[Sax08] N. Saxena. Diagonal circuit identity testing and lower bounds. In ICALP (1), pages
60–71. 2008.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

[Sha92] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[Shp02] A. Shpilka. Affine projections of symmetric polynomials. Journal of Computer and
System Sciences, 65(4):639–659, 2002.

[Shp03] A. Shpilka. Lower bounds for matrix product. SIAM Journal on Computing, 32(5):1185–
1200, 2003.

[Shp09] A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
SIAM Journal on Computing, 38(6):2130–2161, 2009.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual STOC, pages 77–82. 1987.

[SS77] E. Shamir and M. Snir. Lower bounds on the number of multiplications and the number
of additions in monotone computations. Technical Report RC-6757, IBM, 1977.

116

[SS91] V. Shoup and R. Smolensky. Lower bounds for polynomial evaluation and interpolation
problems. In SFCS ’91: Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science, pages 378–383. IEEE Computer Society, Washington, DC, USA,
1991.

[SS09] N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. In
Proceedings of the 24th Annual CCC, pages 137–148. 2009.

[SS10] N. Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Im-
proved black-box identity test for deph-3 circuits. In Proceedings of the 51st Annual
FOCS, pages 21–30. 2010.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969.

[Str73a] V. Strassen. Die berechnungskomplexiät von elementarsymmetrischen funktionen und
von interpolationskoeffizienten. Numerische Mathematik, 20:238–251, 1973.

[Str73b] V. Strassen. Vermeidung von divisionen. The Journal für die Reine und Angewandte
Mathematik, 264:182–202, 1973.

[Str90] V. Strassen. Algebraic complexity theory. In Handbook of Theoretical Computer Science,
vol. A: Algorithms and Complexity (A), pages 633–672. Elsevier and MIT Press, 1990.

[SV08] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of
the 40th Annual STOC, pages 507–516. 2008.

[SV09] A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas.
In APPROX-RANDOM, pages 700–713. 2009.

[SV10a] S. Saraf and I. Volkovich. Black-box identity testing of depth-4 multilinear circuits.
Manuscript, 2010.

[SV10b] A. Shpilka and I. Volkovich. On the relation between polynomial identity
testing and finding variable disjoint factors. In ICALP (1), pages 408–419.
2010.

[SW01] A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10(1):1–27, 2001.

[Tod91] S. Toda. PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[TT94] P. Tiwari and M. Tompa. A direct version of Shamir and Snir’s lower bounds on monotone
circuit depth. Information Processing Letters, 49(5):243–248, 1994.

[Val77] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Lecture notes in
Computer Science, vol. 53, pages 162–176. Springer, 1977.

[Val79a] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual STOC,
pages 249–261. 1979.

117

[Val79b] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[Val80] L. G. Valiant. Negation can be exponentially powerful. Theoretical Computer Science,
12(3):303–314, November 1980.

[Val82] L. G. Valiant. Reducibility by algebraic projections. L’Enseignement Mathematique,
28:253–268, 1982.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[Vio09] E. Viola. The sum of small-bias generators fools polynomials of degree. Computational
Complexity, 18(2):209–217, 2009.

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of poly-
nomials using few processors. SIAM Journal on Computing, 12(4):641–644, November
1983.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, pages 216–226. 1979.

118

	Introduction
	Basic Definitions
	Arithmetic Complexity
	Arithmetic Circuit Classes
	Road Map
	Structural Results
	Lower Bounds for Arithmetic Circuits
	Polynomial Identity Testing
	Reconstruction of Arithmetic Circuits

	Additional Reading

	Structural Results
	Universal Circuits
	Homogenization
	Multilinearization

	Partial Derivatives
	Depth Reduction
	Coping with Division Gates
	Discussion

	Lower Bounds
	Existence of Hard Zero-One Polynomials
	General Circuits and Formulas
	Monotone Circuits
	Noncommutative Computation
	Constant Depth Circuits
	Multilinear Circuits and Formulas
	Circuits with Bounded Coefficients
	Approaches for Proving Lower Bounds
	Rigidity
	Tensor Rank
	Elusive Functions
	Geometric Complexity Theory
	Sum-of-Squares Problem

	Natural Proofs for Arithmetic Circuits?
	Meta Lower Bounds

	Polynomial Identity Testing
	Generators and Hitting Sets
	Randomized Algorithms
	The Schwartz-Zippel Algorithm
	Time-Error Tradeoff
	The Agrawal-Biswass Algorithm

	PIT and Lower Bounds: Hardness-Randomness Tradeoffs
	Sparse Polynomials
	Noncommutative Formulas
	Randomized Noncommutative PIT Algorithms

	Depth-3 Circuits
	White-Box Algorithms
	Black-Box Algorithms

	Depth-4 Circuits
	Diagonal Circuits
	Multilinear (k) Circuits

	Read-Once Formulas
	Relation to Other Problems
	Polynomial Factorization
	Read-Once Testing

	Concluding remarks

	Reconstruction of Arithmetic Circuits
	Hardness of Reconstruction
	Interpolation of Sparse Polynomials
	Learning via Partial Derivative
	Reconstruction of Depth-3 Circuits
	The Case k=2
	The Case of General k

	Concluding Remarks

