An introduction to the probabilistic method

Parker Glynn-Adey

June 16, 2021

Erdős and the Probabilistic Method

Paul Erdős 1913-1996

Which of these is random?

Example \#1: HHTHTHTHTHHTTTHTTTHTTHHHTHTTHHHT

Example \#2: HTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHT This sequence is $x_{n} \equiv x_{n}+1 \bmod 2$.

Expectation

Definition

A random variable is a function $X: \Omega \rightarrow \mathbb{R}$. The expectation of a random variable is:

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr}(X=\omega)
$$

Example

Parker and Lisa toss a coin.
If it comes up H , then Parker gives Lisa $500 \$$.
If it comes up T , then Lisa gives Parker $100 \$$.

Expectation

Example

Suppose that we toss a coin a hundred times, how many heads should appear?
Let X be the number of heads.

$$
\mathbb{E}(X)=\sum_{k=0}^{100} k \operatorname{Pr}(X=k)=\sum_{k=0}^{100} k\binom{100}{k}\left(\frac{1}{2}\right)^{100-k}\left(\frac{1}{2}\right)^{k}=\frac{1}{2^{100}} \sum_{k=0}^{100} k\binom{100}{k}=?!
$$

Linearity of Expectation

Lemma

The expectation $\mathbb{E}(\cdot)$

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr}(X=\omega)
$$

is linear in X. Formally,

$$
\mathbb{E}(\alpha X+\beta Y)=\alpha \mathbb{E}(X)+\beta \mathbb{E}(Y)
$$

Linear of Expectation

Example

Suppose that we toss a coin a hundred times, how many heads should appear?
Let X be the number of heads. Write $X=X_{1}+X_{2}+\cdots+X_{100}$ where

$$
X_{k}= \begin{cases}1 & k^{\prime} \text { th coin heads } \\ 0 & k^{\prime} \text { th coin tails }\end{cases}
$$

It follows from linearity of expectation that:

$$
\mathbb{E}(X)=\sum_{i=1}^{100} \mathbb{E}\left(X_{i}\right)=\sum_{i=1}^{100} \frac{1}{2} \cdot 0+\frac{1}{2} \cdot 1=100 \cdot \frac{1}{2}=50
$$

The Probabilistic Method

Lemma (The Key Observation)

If $X \in \mathbb{N} \cup\{0\}$ everywhere and $\mathbb{E}(X)<1$, then $X=0$ somewhere.

Example (Silly?)

There exists a series of 100 coin tosses without 99 consecutive heads or tails.
We give a non-constructive proof! Let X be the number of occurences of H^{99} or T^{99}. We have $X=X_{0}+X_{1}$ where $X_{0}=1$ if the first 99 tosses agree and $X_{0}=0$ otherwise. Similarly, $X_{1}=1$ if the last 99 tosses agree and $X_{1}=0$ otherwise.

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{0}\right)+\mathbb{E}\left(X_{1}\right)=\left(1 \cdot 2 \cdot \frac{1}{2^{99}}+0\right)+\left(1 \cdot 2 \cdot \frac{1}{2^{99}}+0\right)=\frac{1}{2^{97}} \ll 1
$$

Thus, there is some event where $X=0$. For example, THTTHHTHHTHTTTTTTTHTHHHTHHTTTHTTHTTHHHTTHHTTHHHTHH тнтннннтннннтттннннннтнннтнннтнннннтнтнтТнтТнннннн

Ramsey Numbers

Definition

The (k, k)-Ramsey number $R(k, k)$ is the least n such that any edge-colouring of K_{n} by two colours Red and Blue contains a monochromatic K_{k}. For example, $R(3,3)=6$.

Ramsey Numbers

Theorem (Erdős, 1943)

$R(k, k)$ must grow exponentially in k.
Consider a random edge colouring of K_{n}.
There are $\binom{n}{2}$ edges, and we toss a Red/Blue coin for each edge.

Let S_{k} be a subset of k vertices. It defines a complete subgraph K_{n}.
We let $X\left(S_{k}\right)=1$ if the K_{k} on S_{k} is monochrome and $X\left(S_{k}\right)=0$ otherwise.

$$
\mathbb{E}(X)=\operatorname{Pr}\left(S_{k} \text { monochrome }\right)=\left(\frac{1}{2}\right)^{\binom{k}{2}}+\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{1-\binom{k}{2}}
$$

Ramsey Numbers

And how many monochrome S_{k} can K_{n} have?
Let X be the total number of monochrome K_{k} in a random colouring.

$$
\mathbb{E}(X)=\sum_{S_{k} \subset K_{n}} \mathbb{E}\left(X\left(S_{k}\right)\right) \leq\left|\left\{S_{k} \subset K_{n}\right\}\right| \operatorname{Pr}\left(K_{k} \text { monochrome }\right) \leq\binom{ n}{k} 2^{1-\binom{k}{2}}
$$

Lemma

If $\binom{n}{k} 2^{1-(}\binom{k}{2}<1$ then there is some colouring of K_{n} without any monochrome K_{k}

Ramsey Numbers

We make the following estimates: $\binom{n}{k}<\frac{n^{k}}{k!}$ and $\frac{1}{2} k^{2}<\binom{k}{2}$.
Suppose that $n=2^{k / 2}$ and $k>3$ we get:

$$
\begin{aligned}
\mathbb{E}(X) & \leq\binom{ n}{k} 2^{1-\binom{k}{2}} \\
& <\binom{n}{k} 2^{1-\frac{1}{2} k^{2}} \\
& <\frac{n^{k}}{k!} 2^{1-\frac{1}{2} k^{2}} \\
& <\frac{\left(2^{k / 2}\right)^{k}}{k!} 2^{1-\frac{1}{2} k^{2}}=\frac{2}{k!}<1
\end{aligned}
$$

Theorem (Erdős, 1943)
$R(k, k)$ must grow faster than $2^{k / 2}$.

Ramsey Numbers via Counting

How many colourings of K_{n} are there?
K_{n} has $\binom{n}{2}$ edges, and thus we get: $2\binom{n}{2}$ colourings.

How many colourings of K_{n} have a monochromatic K_{k} ?
Any S_{k} in K_{n} can be red or blue, and we let the remaining edges be coloured arbitrarily.
Thus, there are at most $2 \cdot\binom{n}{k} \cdot 2\binom{n}{2}-\binom{k}{2}$ colourings with a monochrome K_{k}.

Thus, there will be colourings without monochrome K_{k} when:

$$
2^{\binom{n}{2}}>2 \cdot\binom{n}{k} \cdot 2^{\binom{n}{2}-\binom{k}{2}} \Longleftrightarrow 1>\binom{n}{k} 2^{1-\binom{k}{2}}
$$

References

- Erdős, Paul. "Some remarks on the theory of graphs." Bulletin of the American Mathematical Society 53.4 (1947): 292-294.
- Alon, Noga, and Joel H. Spencer. The probabilistic method. John Wiley \& Sons, 2016.

\#UndergraduateSeminar

Wednesdays 14-15:00 EST on Zoom
https://pgadey.ca/seminar/

Wanna share something cool?

Contact the organizers.

