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Erdos and the Probabilistic Method

Paul Erdos 1913 - 1996
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Which of these is random?

Example #1: HHTHTHTHTHHTTTHTTTHTTHHHTHTTHHHT

Example #2: HTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHT
This sequence is x, = x, +1 mod 2.
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Expectation

A random variable is a function X : Q — R. The expectation of a random variable is:

E(X) = X(w)Pr(X =w)

weN

Example

Parker and Lisa toss a coin.
If it comes up H, then Parker gives Lisa 500$.
If it comes up T, then Lisa gives Parker 100$.
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Expectation

Suppose that we toss a coin a hundred times, how many heads should appear?
Let X be the number of heads.

100 100 100—k k 100
Z Z 100 1 1 1 Z 100
k=0 k=0

k=0
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Linearity of Expectation

Lemma

The expectation E(-)

E(X) = X(w)Pr(X =w)

weN

is linear in X. Formally,

E(aX + BY) = aE(X) + SE(Y)
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Linear of Expectation

Suppose that we toss a coin a hundred times, how many heads should appear?

Let X be the number of heads. Write X = X7 + X5 + - - - + Xjgo where

1 k'th coin heads
X = .
0 K'th coin tails

It follows from linearity of expectation that:

100 100
1 1

1
E(X):ZE(X,-):Z§.0+§.1:100.§:50
i=1 i=1
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The Probabilistic Method

Lemma (The Key Observation)
If X € NU {0} everywhere and E(X) < 1, then X = 0 somewhere.

Example (Silly?)
There exists a series of 100 coin tosses without 99 consecutive heads or tails.
We give a non-constructive proof! Let X be the number of occurences of H% or T9°,

We have X = Xy + X; where Xg = 1 if the first 99 tosses agree and Xy = 0 otherwise.
Similarly, X1 = 1 if the last 99 tosses agree and X; = 0 otherwise.

1 1 1

Thus, there is some event where X = 0. For example,
THTTHHTHHTHTTTTTTTHTHHHTHHTTTHTTHTTHHHTTHHTTHHHTHH

THTHHHHTHHHHTTTHHHHHHTHHHTHHHTHHHHHTHTHT THTTHHHHHH
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Ramsey Numbers

The (k, k)-Ramsey number R(k, k) is the least n such that any edge-colouring of K,
by two colours Red and Blue contains a monochromatic K. For example, R(3,3) = 6.

9/14



Ramsey Numbers
Theorem (Erdés, 1943)

R(k, k) must grow exponentially in k.

Consider a random edge colouring of K.
There are (g) edges, and we toss a Red/Blue coin for each edge.

Let Sx be a subset of k vertices.It defines a complete subgraph K.
We let X(Sk) = 1 if the Kk on Si is monochrome and X(Sx) = 0 otherwise.

E(X) = Pr(Sx monochrome) — <;>(§) N (;)(5) oY)
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Ramsey Numbers

And how many monochrome Sy can K, have?
Let X be the total number of monochrome Kj in a random colouring.

E(X) = Z E(X(Sk)) < |[{Sk C Kn}| Pr(Kkmonochrome) < (Z) 21-(3)
SkCKn

Lemma

If (2)21_(5) < 1 then there is some colouring of K,, without any monochrome Ky
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Ramsey Numbers
We make the following estimates: (}) < Z—k, and 1k2 < (%).
Suppose that n = 2%/2 and k > 3 we get:

E(X)

AN A
7 N N
X 3 X 3
N~
N N
= =
o— =
> ot

n 171k2
< W
(2k/2)k 1-1e2 _ 2

Theorem (Erdés, 1943)
R(k, k) must grow faster than 2~/2.
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Ramsey Numbers via Counting

How many colourings of K,, are there?
Ky has (5) edges, and thus we get: 2(2) colourings.

How many colourings of K, have a monochromatic K?
Any Si in K, can be red or blue, and we let the remaining edges be coloured arbitrarily.

Thus, there are at most 2 - (Z) -2(9_(;) colourings with a monochrome K.

Thus, there will be colourings without monochrome Kj when:

20 > 2. (k) 2O e 1 (2)21—(:)
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#UndergraduateSeminar
Wednesdays 14-15:00 EST on Zoom
https://pgadey.ca/seminar/

Wanna share something cool?

Contact the organizers.
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