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The Classical Process

Motivation
Consider a finite collection of i.i.d. random variables 𝑋1,… , 𝑋𝑛 with 𝐸𝑋𝑖 = 0 and
𝐸𝑋2

𝑖 = 1. Define a process (𝑍𝑡)𝑡∈[0,1] by 𝑍
(

𝑘
𝑛

)

= 𝑋𝑘 for 𝑘 ∈ {1,… , 𝑛} and linearly

interpolate on intervals of the form
[

𝑘
𝑛
, 𝑘+1

𝑛

)

.
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Gaussian Processes

Fix a probability space (Ω,ℱ , 𝑃 ).

Definition: Gaussian Process
A Gaussian process is a stochastic process (𝑋𝑡)𝑡∈𝑇 such that any finite linear
combination of the variables 𝑋𝑡, 𝑡 ∈ 𝑇 is Gaussian.

Theorem: Characterization of Gaussian Processes
Gaussian processes are completely determined/characterized by their mean and
covariance functions:

𝑚 ∶ 𝑇 → ℝ , Γ ∶ 𝑇 × 𝑇 → ℝ

𝑡 ↦ 𝐸[𝑋𝑡] (𝑠, 𝑡) ↦ Cov(𝑋𝑠, 𝑋𝑡).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.
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Gaussian Processes

Theorem: Characterization of Gaussian Processes
Gaussian processes are completely determined/characterized by their mean and
covariance functions:

𝑚 ∶ 𝑇 → ℝ , Γ ∶ 𝑇 × 𝑇 → ℝ

𝑡 ↦ 𝐸[𝑋𝑡] (𝑠, 𝑡) ↦ Cov(𝑋𝑠, 𝑋𝑡).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.

Proof:
For a Gaussian process (𝑋𝑡)𝑡∈𝑇 with mean and covariance functions 𝑚𝐗,Γ𝐗 and any
choice 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑝 we have 𝐗 = (𝑋𝑡1 ,… , 𝑋𝑡𝑝 ), 𝑡𝑖 ∈ 𝑇 , to be an ℝ𝑝-valued random
variable with a multivariate normal distribution and hence to have characteristic
function (Fourier transform of distribution):

𝜑𝐗(𝑢) = 𝐸[𝑒𝑖⟨𝑢,(𝑋𝑡1 ,…,𝑋𝑡𝑝 )⟩] = exp(𝑖⟨𝑢, 𝜇𝐗⟩ −
1
2
⟨𝑢,𝚺𝐗𝑢⟩),

where 𝜇 = (𝐸[𝑋𝑡1 ],… , 𝐸[𝑋𝑡𝑝 ]) = (𝑚(𝑡𝑗))1≤𝑗≤𝑝 is the mean vector and 𝚺𝑖,𝑗 = (Γ(𝑡𝑖, 𝑡𝑗))1≤𝑖,𝑗≤𝑝
the covariance matrix.
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(𝚺𝐗)𝑖,𝑗 = (Γ𝐗(𝑡𝑖, 𝑡𝑗))1≤𝑖,𝑗≤𝑝 the covariance matrix. Now, considering another Gaussian
process (𝑌𝑡)𝑡∈𝑇 with the same mean and covariance functions as (𝑋𝑡)𝑡∈𝑇 i.e. Γ𝐘 = Γ𝐗, and
𝑚𝐗 = 𝑚𝐘, we have the characteristic function of its finite dimensional marginal,
(𝑌𝑡1 ,… , 𝑌𝑡𝑝 ), to be given identically as to that of above.

Hence, we have an agreement in distribution of the finite dimensional marginals of
(𝑋𝑡)𝑡∈𝑇 and (𝑌𝑡)𝑡∈𝑇 and hence an equivalence in law.
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Gaussian Processes

Definition: Centered Gaussian Process
A Gaussian process is a stochastic process (𝑋𝑡)𝑡∈𝑇 such that any finite linear
combination of the variables 𝑋𝑡, 𝑡 ∈ 𝑇 is Gaussian.

Theorem: Characterization of Gaussian Processes
Gaussian processes are completely determined/characterized by their mean and
covariance functions:

𝑚 ∶ 𝑇 → ℝ , Γ ∶ 𝑇 × 𝑇 → ℝ

𝑡 ↦ 𝐸[𝑋𝑡] (𝑠, 𝑡) ↦ Cov(𝑠, 𝑡).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.

Moral Conclusion:
Specifying Gaussian processes amounts to specifying a mean and covariance structure
on the collection. Similarly as to how specifying a Gaussian r.v. requires only a mean
and variance!
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The Classical Process

Definition: Centered Gaussian Process
A centered Gaussian process is a stochastic process (𝑋𝑡)𝑡∈𝑇 such that any finite linear
combination of the variables 𝑋𝑡, 𝑡 ∈ 𝑇 is centered Gaussian. (𝑡 ↦ 𝐸[𝑋𝑡] ≡ 0)

Definition: Brownian motion
A stochastic process (𝐵𝑡)𝑡≥0 on (Ω,ℱ , 𝑃 ) is a standard Brownian Motion if it satisfies
one of the following three equivalent assertions:

(i) (𝐵𝑡)𝑡≥0 is a centered Gaussian process with covariance: Cov(𝐵𝑠, 𝐵𝑡) = min(𝑠, 𝑡) ≔ 𝑠 ∧ 𝑡.

(ii) 𝐵0 = 0 a.s. and for every 0 ≤ 𝑠 < 𝑡 the random variable 𝐵𝑡 − 𝐵𝑠 is independent of
𝜎(𝐵𝑟 ∶ 𝑟 ≤ 𝑠) and 𝐵𝑡 − 𝐵𝑠 ∼ 𝒩 (0, 𝑡 − 𝑠).

(iii) 𝐵0 = 0 a.s. and for 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 the r.v.’s (𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 ) for 1 ≤ 𝑖 ≤ 𝑛 are indep.
and 𝐵𝑡𝑖 − 𝐵𝑡𝑖−1 ∼ 𝒩 (0, 𝑡𝑖 − 𝑡𝑖−1).

and as well:

(iv)(𝐵𝑡)𝑡≥0 has surely continuous sample paths: ∀𝜔 ∈ Ω, 𝑡 ↦ 𝐵𝑡(𝜔) ∈ 𝐶(ℝ≥0,ℝ).
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and as well:

(iv)(𝐵𝑡)𝑡≥0 has surely continuous sample paths: ∀𝜔 ∈ Ω, 𝑡 ↦ 𝐵𝑡(𝜔) ∈ 𝐶(ℝ≥0,ℝ).

Note:
Independence of increments are a key feature in the classical process!
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The Fractional Brownian Motion

From here on out we consider only 𝑇 = [0,∞) i.e. positive time.

Definition: Fractional Brownian Motion
A fractional Brownian Motion of Hurst parameter/index𝐻 ∈ (0, 1] is a centered
Gaussian process (𝐵𝐻

𝑡 )𝑡≥0 with covariance function

𝐸[𝐵𝐻
𝑡 𝐵𝐻

𝑠 ] = 1
2
(𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠|2𝐻 ).

How is this a generalization of the classical Brownian motion?

Proposition:

If𝐻 = 1∕2 then fBm is nothing but a classical Brownian motion.

Proof:
Fix 0 ≤ 𝑠 < 𝑡 and observe

𝐸[𝐵1∕2
𝑠 𝐵1∕2

𝑡 ] = 1
2
(𝑡 + 𝑠 − |𝑡 − 𝑠|) = 𝑠 = 𝑠 ∧ 𝑡.
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Properties

Self-Similarity
For 𝜀 > 0 given and 𝐻 ∈ (0, 1), we have (𝜀−𝐻𝐵𝐻

𝜀𝑡 )𝑡≥0 is an fBm of Hurst index𝐻 .

Illustration for𝐻 = 1∕2:
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such that 𝑡 ↦ 𝑋𝑡 ∈ 𝐶[0,∞) (surely) and for all 𝑡 ≥ 0, 𝑃 (𝐵𝐻

𝑡 = 𝑋𝑡) = 1.

Proof:
Simply observe:

𝐸[(𝐵𝐻
𝑡 − 𝐵𝐻

𝑠 )2] = |𝑡 − 𝑠|2𝐻 ,

and apply Kolmogorov-Čhenstov.
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𝜀𝑡 )𝑡≥0 is an fBm of Hurst index𝐻 .

Stationary Increments
For 𝑠 ≥ 0 fixed and𝐻 ∈ (0, 1), the process (𝐵𝐻

𝑠+𝑡 − 𝐵𝐻
𝑠 )𝑡≥0 is an fBm of Hurst index𝐻 .

Continuity of Sample Paths
An fBm (𝐵𝐻

𝑡 )𝑡≥0 admits a continuous modification. That is we have some process (𝑋𝑡)𝑡≥0
such that 𝑡 ↦ 𝑋𝑡 ∈ 𝐶[0,∞) (surely) and for all 𝑡 ≥ 0, 𝑃 (𝐵𝐻

𝑡 = 𝑋𝑡) = 1.

The fBm is (in general) not Markov
Let (𝐵𝐻

𝑡 )𝑡≥0 be a fractional Brownian motion of Hurst index𝐻 ≠ 1∕2. Then (𝐵𝐻
𝑡 )𝑡≥0 is

not a Markov process.

Then how do we describe the dependence structure of fBm and how does such
structure vary with the Hurst index?

Mathew Cater Benavides (University of Toronto) An Introduction to the Fractional Brownian Motion CMS Seminar 24 / 30



Properties

Self-Similarity
For 𝜀 > 0 given and 𝐻 ∈ (0, 1), the process (𝜀−𝐻𝐵𝐻

𝜀𝑡 )𝑡≥0 is an fBm of Hurst index𝐻 .

Stationary Increments
For 𝑠 ≥ 0 fixed and𝐻 ∈ (0, 1), the process (𝐵𝐻

𝑠+𝑡 − 𝐵𝐻
𝑠 )𝑡≥0 is an fBm of Hurst index𝐻 .

Continuity of Sample Paths
An fBm (𝐵𝐻

𝑡 )𝑡≥0 admits a continuous modification. That is we have some process (𝑋𝑡)𝑡≥0
such that 𝑡 ↦ 𝑋𝑡 ∈ 𝐶[0,∞) (surely) and for all 𝑡 ≥ 0, 𝑃 (𝐵𝐻

𝑡 = 𝑋𝑡) = 1.

The fBm is (in general) not Markov
Let (𝐵𝐻

𝑡 )𝑡≥0 be a fractional Brownian motion of Hurst index𝐻 ≠ 1∕2. Then (𝐵𝐻
𝑡 )𝑡≥0 is

not a Markov process.

Then how do we describe the dependence structure of fBm and how does such
structure vary with the Hurst index?

Mathew Cater Benavides (University of Toronto) An Introduction to the Fractional Brownian Motion CMS Seminar 24 / 30



Properties

Dependence of Increments
Disjoint increments of an fBm of Hurst index𝐻 ∈ (0, 1] are negatively correlated for
𝐻 ∈ (0, 1∕2) and positively correlated for𝐻 ∈ (1∕2, 1).

Proof:
Suppose that 0 ≤ 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 so as to ensure [𝑠1, 𝑡1] ∩ [𝑠2, 𝑡2] = ∅. Then one can
check the covariance of the increments to be given as:

𝐸[(𝐵𝐻
𝑡1
− 𝐵𝐻

𝑠1
)(𝐵𝐻

𝑡2
− 𝐵𝐻

𝑠2
)] = 1

2

(

|𝑡2 − 𝑠1|
2𝐻 − |𝑡2 − 𝑡1|

2𝐻 −
(

|𝑠2 − 𝑠1|
2𝐻 − |𝑠2 − 𝑡2|

2𝐻
))

.

Then considering the map 𝑓 (𝑥) = 𝑥2𝐻 and putting
𝑎1 = 𝑡2 − 𝑠1, 𝑎2 = 𝑡2 − 𝑡1, 𝑏1 = 𝑠2 − 𝑠1, 𝑏2 = 𝑠2 − 𝑡1 gives that 𝑎1 − 𝑎2 = 𝑏1 − 𝑏2 = 𝑡1 − 𝑠1 (note
that 𝑏2 < 𝑎2 < 𝑏1 < 𝑎1) and allows the above to be expressed as follows:

𝐸[(𝐵𝐻
𝑡1
− 𝐵𝐻

𝑠1
)(𝐵𝐻

𝑡2
− 𝐵𝐻

𝑠2
)] = 1

2
(𝑓 (𝑎1) − 𝑓 (𝑎2) − (𝑓 (𝑏1) − 𝑓 (𝑏2))).

Now as 𝑓 ′′ < 0 for𝐻 ∈ (0, 1∕2)we have for such 𝐻 that 𝐸[(𝐵𝐻
𝑡1
− 𝐵𝐻

𝑠1
)(𝐵𝐻

𝑡2
− 𝐵𝐻

𝑠2
)] < 0.

And since 𝑓 ′′ > 0 for𝐻 ∈ (1∕2, 1)we have for such𝐻 that 𝐸[(𝐵𝐻
𝑡1
−𝐵𝐻

𝑠1
)(𝐵𝐻

𝑡2
−𝐵𝐻

𝑠2
)] > 0.
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Sample Path Regularity w.r.t𝐻
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Limiting Case

Gaussian Beam; H = 1

One can check that for 𝐻 = 1we have (𝐵𝐻
𝑡 )𝑡≥0

𝑑
= (𝑡𝜉)𝑡≥0, for 𝜉 ∼ 𝒩 (0, 1).
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𝑡𝜉(𝜔1)
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Limiting Case

Gaussian Beam; H = 1

One can check that for 𝐻 = 1we have (𝐵𝐻
𝑡 )𝑡≥0

𝑑
= (𝑡𝜉)𝑡≥0, for 𝜉 ∼ 𝒩 (0, 1).
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Limiting Case

Gaussian Beam; H = 1

One can check that for 𝐻 = 1we have (𝐵𝐻
𝑡 )𝑡≥0

𝑑
= (𝑡𝜉)𝑡≥0, for 𝜉 ∼ 𝒩 (0, 1).
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