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The Classical Process

Consider a finite collection of i.i.d. random variables X, ..., X, with EX, = 0 and
EX? = 1. Define a process (Z,),¢(.1 by Z(f): X, for k € {1, ...,n} and linearly

interpolate on intervals of the form [" el )
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Gaussian Processes

Fix a probability space (Q, #, P).
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Gaussian Processes

Fix a probability space (Q, #, P).

Definition: Gaussian Process

A Gaussian process is a stochastic process (X,),r such that any finite linear
combination of the variables X,, t € T is Gaussian.
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Gaussian Processes

Fix a probability space (Q, #, P).

Definition: Gaussian Process

A Gaussian process is a stochastic process (X,),r such that any finite linear
combination of the variables X,, t € T is Gaussian.

Theorem: Characterization of Gaussian Processes

Gaussian processes are completely determined/characterized by their mean and
covariance functions:

m:T >R s I': TXT - R

t— E[X,] (s, 1) » Cov(X,, X)).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.
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Gaussian Processes

Theorem: Characterization of Gaussian Processes

Gaussian processes are completely determined/characterized by their mean and
covariance functions:

m:T >R s I': TXT >R

t— E[X,] (s,t) » Cov(X,, X)).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.

Proof:

For a Gaussian process (X,),c; with mean and covariance functions my, I'y and any
choicet; <1, < -+ <t,wehaveX = (X, ,... X, )1, €T, to be an R?-valued random
variable with a multivariate normal distribution and hence to have characteristic
function (Fourier transform of distribution):

i(u,(X,1 ,M,X,p

ox(@) = Ele 1 = explifu, i) = 3G Ext),

where y = (E[X, ], ... ,E[ti]) = (m(t))),<;<, is the mean vector and X, ; = ('(#;, 7)) 1< <,
the covariance matrix.

= > - = = e
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Gaussian Processes

Proof:

For a Gaussian process (X,),c; with mean and covariance functions my, I'y and any
choicet, <1, < -+ <t,wehave X = (X, - ,X,p), t; € T, to be an R”-valued random
variable with a multivariate normal distribution and hence to have characteristic
function (Fourier transform of its distribution):

x() = E[“N] = expli(u i) = 5 (s Zxan)

where puy = (E[X, 1,0y E[X,p]) = (mx(t;)) /<, is the mean vector and

(Zx);; = g, 1)), j<, the covariance matrix. Now, considering another Gaussian
process (Y,),cr with the same mean and covariance functions as (X,),c i.e. I'y = I'y, and
my = my, we have the characteristic function of its finite dimensional marginal,

(0% 0 0005 Y,p ), to be given identically as to that of above.
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Gaussian Processes

Proof:

For a Gaussian process (X,),c; with mean and covariance functions my, I'y and any
choicet, <1, < -+ <t,wehave X = (X, - ,X,p), t; € T, to be an R”-valued random
variable with a multivariate normal distribution and hence to have characteristic
function (Fourier transform of its distribution):

x() = E[“N] = expli(u i) = 5 (s Zxan)

where py = (E[X, 1,0y E[X,p]) = (mx(t;)) /<, is the mean vector and

(Zx);; = g, 1)), j<, the covariance matrix. Now, considering another Gaussian
process (Y,),cr with the same mean and covariance functions as (X,),c i.e. I'y = I'y, and
my = my, we have the characteristic function of its finite dimensional marginal,

(0% 0 0005 Y,p), to be given identically as to that of above.

Hence, we have an agreement in distribution of the finite dimensional marginals of
(X,),er and (Y,),r and hence an equivalence in law.
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Gaussian Processes

Definition: Centered Gaussian Process

A Gaussian process is a stochastic process (X,),r such that any finite linear
combination of the variables X,, t € T is Gaussian.

G

Theorem: Characterization of Gaussian Processes

Gaussian processes are completely determined/characterized by their mean and
covariance functions:
m:T->R s I': TXT >R

t— E[X,] (s,1) = Cov(s,1).

i.e. Gaussian processes sharing the same mean and cov. functions are equal in law.

Moral Conclusion:

Specifying Gaussian processes amounts to specifying a mean and covariance structure
on the collection. Similarly as to how specifying a Gaussian r.v. requires only a mean
and variance!

Maruew Cater BeNaviDes (Uni y of Toronto) AN INTRODUCTION TO THE FRACTIONAL BROWNIAN MoOTION CMS SEMINAR



The Classical Process

Definition: Centered Gaussian Process

A centered Gaussian process is a stochastic process (X,),; such that any finite linear
combination of the variables X,, r € T is centered Gaussian. (t » E[X,] = 0)
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The Classical Process

Definition: Centered Gaussian Process

A centered Gaussian process is a stochastic process (X,),c; such that any finite linear

combination of the variables X,, r € T is centered Gaussian. (t » E[X,] = 0) y

Definition: Brownian motion

A stochastic process (B,),s, on (2, #, P) is a standard Brownian Motion if it satisfies
one of the following three equivalent assertions:

(1) (B));so is a centered Gaussian process with covariance: Cov(B;, B,) = min(s, t) := s At.

(ii) By =0 a.s. and for every 0 < s < t the random variable B, — B, is independent of
o(B, : r<s)and B, — B, ~ /(0,1 — s).

(ili) By=0as. and for 0 =1, <t; < - <t,therv’s (B, - B, )forl <i<nareindep.
and B, = B, ~ (0,1, —1,_,).

and as well:

(iv)(B,),s has surely continuous sample paths: Vo € Q, 7 = B,(w) € C(R, R).
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The Classical Process

Definition: Brownian motion

A stochastic process (B,),5, on (2, #, P) is a standard Brownian Motion if it satisfies
one of the following three equivalent assertions:

(1) (B));so is a centered Gaussian process with covariance: Cov(B;, B,) = min(s, t) := s At.

(ii) By = 0 a.s. and for every 0 < s < t the random variable B, — B, is independent of
o(B, : r<s)and B, — B, ~ /(0,1 — s).

(ili) By=0as. and for 0 =1, <t; < - <t, therv’s (B, - B, )forl <i<nareindep.
and B, = B, ~ (0,1, —1,_,).

and as well:

(iv)(B,),s has surely continuous sample paths: Vo € Q, 7 = B,(w) € C(R, R).

Note:

Independence of increments are a key feature in the classical process!
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The Fractional Brownian Motion

From here on out we consider only T’ = [0, o) i.e. positive time.

Definition: Fractional Brownian Motion

A fractional Brownian Motion of Hurst parameter/index H € (0, 1] is a centered
Gaussian process (BtH )is0 With covariance function

E[B"B"]= %(tZH + 528 — |t — s|?H).
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The Fractional Brownian Motion

From here on out we consider only T’ = [0, o) i.e. positive time.

Definition: Fractional Brownian Motion

A fractional Brownian Motion of Hurst parameter/index H € (0, 1] is a centered
Gaussian process (BtH )is0 With covariance function

E[B"B"]= %(tZH + 528 — |t — s|?H).

How is this a generalization of the classical Brownian motion?
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The Fractional Brownian Motion

From here on out we consider only T’ = [0, o) i.e. positive time.

Definition: Fractional Brownian Motion

A fractional Brownian Motion of Hurst parameter/index H € (0, 1] is a centered
Gaussian process (BtH )is0 With covariance function

E[B"B"]= %(tZH + 528 — |t — s|?H).

How is this a generalization of the classical Brownian motion?
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The Fractional Brownian Motion

From here on out we consider only T’ = [0, o) i.e. positive time.

Definition: Fractional Brownian Motion

A fractional Brownian Motion of Hurst parameter/index H € (0, 1] is a centered
Gaussian process (BtH )is0 With covariance function

E[B/'B'] = %(ﬂ’f +5M =]t = 5.

How is this a generalization of the classical Brownian motion?

Proposition:

If H = 1/2 then fBm is nothing but a classical Brownian motion.

Proof:

Fix 0 < s < t and observe

E[B?B*] = %(r+s— lt=sh=s=sAt.

T =

CMS SEMINAR
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Properties

Self-Similarity

For £ > 0 given and H € (0, 1), we have (e~ BY),, is an fBm of Hurst index H.
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Self-Similarity

For £ > 0 given and H € (0, 1), we have (e~ BY),, is an fBm of Hurst index H.

Mlustration for H = 1/2:

Maruew Cater BeNaviDes (Uni oronto) AN INTRODUCTION TO THE FRACTIONAL BROWNIAN MoOTION CMS SEMINAR



Properties

Self-Similarity

For € > 0 given and H € (0, 1), we have (e BY) . is an fBm of Hurst index H.
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Properties

Self-Similarity

For € > 0 given and H € (0, 1), we have (e BY) . is an fBm of Hurst index H.

Exercise.

O
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Self-Similarity

For £ > 0 given and H € (0, 1), the process (¢ Bf),, is an fBm of Hurst index H.

Stationary Increments J

For s > 0 fixed and H € (0, 1), the process (B — B),, is an fBm of Hurst index H.
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Self-Similarity J

For £ > 0 given and H € (0, 1), the process (¢ Bf),, is an fBm of Hurst index H.

Stationary Increments J

For s > 0 fixed and H € (0, 1), the process (B — B),, is an fBm of Hurst index H.

(B, (@) = Bl (@))e=0

BY(w)

MJJ\»«
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Properties

Stationary Increments

For 5 > 0 fixed and H € (0, 1), the process (B — B!),,, is an fBm of Hurst index H.

B, (@) - By ()

(Bfi(@) = Bl (@))e=0
BY(w)

Bl M’A“ t
B “\me W{y\wﬂlf"

1 .
g
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Properties

Self-Similarity
For £ > 0 given and H € (0, 1), the process (¢~ BY J

)iso is an fBm of Hurst index H.
Stationary Increments

For s > 0 fixed and H € (0, 1), the process (B — B!),,, is an fBm of Hurst index H. J

oot
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Properties

Self-Similarity

For € > 0 given and H € (0, 1), the process (e~ % Bg )iso is an fBm of Hurst index H.

Stationary Increments

For s > 0 fixed and H € (0, 1), the process (B — B!),,, is an fBm of Hurst index H. J

Proof:
Exercise.

O
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Properties

Self-Similarity J

For € > 0 given and H € (0, 1), the process (¢~ B¥) ., is an fBm of Hurst index H.
g p et /120

Stationary Increments J

For s > 0 fixed and H € (0, 1), the process (B” — B),, is an fBm of Hurst index H.

Continuity of Sample Paths

An fBm (B/"),5, admits a continuous modification. That is we have some process (X,),s
such that 7 » X, € C[0, o) (surely) and for allz > 0, P(B” = X,) = 1.

CMS SEMINAR
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Self-Similarity

For € > 0 given and H € (0, 1), the process (=7 B),, is an fBm of Hurst index H.

J

Stationary Increments J

For s > 0 fixed and H € (0, 1), the process (B, — B!),,, is an fBm of Hurst index H.

Continuity of Sample Paths

An fBm (B/"),5, admits a continuous modification. That is we have some process (X,),s
such that 7 » X, € C[0, o) (surely) and for allz > 0, P(B” = X,) = 1.

|

Theorem: Kolmogorov-Chenstov Continuity Theorem

Assume that for a stochastic process (X)), there exists K > 0, p > 0, # > 0 such that for
all s,z > 0:
E[|X, — X,|’] < K|t — s|'*.

Then the process has a continuous modification, i.e. a process X, s such that
t— X, €C[0,c0)and forallt >0 P(X, = X,) = 1.
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Theorem: Kolmogorov-Chenstov Continuity Theorem J

Assume that for a stochastic process (X),,, there exists K > 0, p > 0, # > 0 such that for
all s,z > 0:
E[|X, - X,|’] < K|t —s|"*.

Then the process has a continuous modification, i.e. there exists a process (X, Diso such
thatt — X, € C[0, ) and forallz >0, P(X, = X,) = 1.

Continuity of Sample Paths

An fBm (B/"),5, admits a continuous modification. That is we have some process (X,),s
such that 7 » X, € C[0, o) (surely) and for allz > 0, P(B” = X,) = 1.

|
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Theorem: Kolmogorov-Chenstov Continuity Theorem

Assume that for a stochastic process (X,),s, there exists K > 0, p > 0, # > 0 such that for
all s, > 0:

E[|X, — X,|"] < K|t — s|"*’.
Then the process has a continuous modification, i.e. there exists a process (X, Diso such
thatt — X, € C[0, ) and forallz >0, P(X, = X,) = 1.

Continuity of Sample Paths

An fBm (B/"),5, admits a continuous modification. That is we have some process (X,),s
such that 7 » X, € C[0, o) (surely) and for allz > 0, P(B” = X,) = 1.

.

Proof:

Simply observe:
E[(B" - B")] = |t — s,

and apply Kolmogorov-Chenstov.
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Self-Similarity

For € > 0 given and H € (0, 1), the process (e~ % Bg )is0 is an fBm of Hurst index H.

Stationary Increments

For s > 0 fixed and H € (0, 1), the process (B — B),. is an fBm of Hurst index H.

s+t

Continuity of Sample Paths

An fBm (BIH )is0 admits a continuous modification. That is we have some process (X,);so
such thatt — X, € C[0, o) (surely) and for all 7 > 0, P(BIH =X,)=1

o

The fBm is (in general) not Markov

Let (BIH )iso be a fractional Brownian motion of Hurst index H # 1/2. Then (Bfl )0 i8
not a Markov process.

Y
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Self-Similarity

For € > 0 given and H € (0, 1), the process (e~ % Bg )is0 is an fBm of Hurst index H.

Stationary Increments

For s > 0 fixed and H € (0, 1), the process (B — B),. is an fBm of Hurst index H.

s+t

Continuity of Sample Paths

An fBm (BIH )is0 admits a continuous modification. That is we have some process (X,);so
such thatt — X, € C[0, o) (surely) and for all 7 > 0, P(BIH =X,)=1

o

The fBm is (in general) not Markov

Let (BIH )iso be a fractional Brownian motion of Hurst index H # 1/2. Then (Bfl )0 i8
not a Markov process.

Y

Then how do we describe the dependence structure of fBm and how does such
structure vary with the Hurst index?
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Properties

Dependence of Increments

Disjoint increments of an fBm of Hurst index H € (0, 1] are negatively correlated for
H e (0, 1/2) and positively correlated for H € (1/2,1).
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Dependence of Increments

Disjoint increments of an fBm of Hurst index H € (0, 1] are negatively correlated for

H e (0, 1/2) and positively correlated for H € (1/2,1). )

oo

Suppose that 0 < s, <, < s, <t, so as to ensure [s,,#,]1N [s,,7,] = #. Then one can
check the covariance of the increments to be given as:

1
E[(B" - BY)(B! - B")] = §<|z2 — s Py =, P - (|s2 — s PH s, — 12|2H>).
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Dependence of Increments

Disjoint increments of an fBm of Hurst index H € (0, 1] are negatively correlated for

H e (0, 1/2) and positively correlated for H € (1/2,1). )

oo

Suppose that 0 < s, <, < s, <t, so as to ensure [s,,#,]1N [s,,7,] = #. Then one can
check the covariance of the increments to be given as:

1
E[(B" - B")(B!" - B)] = §<|’2 s Pty — 1, P - (|s2 — 5,7 s, —12|2H>>.
Then considering the map f(x) = x* and putting

a, =t,—s,a,=t,—t,b =s,—5,,b,=5,—1t, gives thata, —a, = b, —b, =1, — 5, (note
that b, < a, < b; < a,) and allows the above to be expressed as follows:

EI(B! = BIYBY = B = 3((@) = f(@) = (/b)) = Fb).
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Dependence of Increments

Disjoint increments of an fBm of Hurst index H € (0, 1] are negatively correlated for

H e (0, 1/2) and positively correlated for H € (1/2,1). )

oo

Suppose that 0 < s, <, < s, <t, so as to ensure [s,,#,]1N [s,,7,] = #. Then one can
check the covariance of the increments to be given as:

1
E[(B" - B")(B!" - B)] = §<|’2 s Pty — 1, P - (|s2 — 5,7 s, —12|2H>>.
Then considering the map f(x) = x* and putting

a, =t,—s,a,=t,—t,b =s,—5,,b,=5,—1t, gives thata, —a, = b, —b, =1, — 5, (note
that b, < a, < b; < a,) and allows the above to be expressed as follows:

EI(B! = BIYBY = B = 3((@) = f(@) = (/b)) = Fb).

Now as f”" < 0 for H € (0,1/2) we have for such H that E[(Bfl’ - Bfl’)(Bg - BQ’)] <0.
And since f” > 0 for H € (1/2,1) we have for such H that E[(Bf - B;’)(BH - sz’)] > 0.

OJ

5]
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FIGURE 1. Paths of fBm for different values of H.
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Limiting Case

Gaussian Beam; H =1

One can check that for H = 1 we have (BtH )is0 ck (t&),50, for & ~ (0, 1).
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Limiting Case

Gaussian Beam; H =1

One can check that for H = 1 we have (BtH )is0 ck (t&),50, for & ~ (0, 1).

8 .
1&(w,)

2

Maruew Cater BeNaviDes (Uni oronto) AN INTRODUCTION TO THE FRACTIONAL BROWNIAN MoOTION CMS SEMINAR



Limiting Case

Gaussian Beam; H =1

One can check that for H = 1 we have (BtH )is0 ek (t&),5¢, for & ~ (0, 1).

8 .
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Limiting Case

Gaussian Beam; H =1

One can check that for H = 1 we have (BtH )is0 ck (t&),50, for & ~ (0, 1).

8 .
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