Why Geometric Algebra Should be in Standard Linear Algebra Curriculum

x ~ ^

Logan Lim

23/03/2022

Our Cast of Characters*

Logan Lim

The Act of Counting

$3 \quad \mathbf{0} + 3 \quad \mathbf{0} + 2 \quad \mathbf{0} = 3 \quad \mathbf{0} + 5 \quad \mathbf{0}.$

 $\mathbf{0} \times \mathbf{0} = ?$ What does -1 $\mathbf{0}$ mean?

Grassmann's Idea

This may seem contrived, but this is the same principle: $a + bi \in \mathbb{C}$. $a, b \in \mathbb{R}$, or even $\mathbf{v} = a_1 \mathbf{e_1} + a_2 \mathbf{e_2} + ... + a_n \mathbf{e_n} \in \mathbb{R}^n$.

How far should we go with this? What kind of objects deserve this kind of treatment?

Bivectors e_1e_2 Represent a Plane*

A bivector $\mathbf{B} = \mathbf{u} \wedge \mathbf{v}$ is an oriented(+/-) and shapeless representation of a plane. It's magnitude $|\mathbf{B}| = |\mathbf{u}||\mathbf{v}|\sin\theta$ is the area of the parallelogram made by the vectors.

Logan Lim

Counting Floor Tiles with Vectors and Bivectors

For now, let's just consider \mathbb{R}^3 .

(Clifford-Grassmann) Geometric Product

$ec{\mathbf{u}}ec{\mathbf{v}} = ec{\mathbf{u}}\cdotec{\mathbf{v}} + ec{\mathbf{u}}\wedgeec{\mathbf{v}}$

$\vec{\mathbf{u}} \wedge \vec{\mathbf{v}} = -\vec{\mathbf{v}} \wedge \vec{\mathbf{u}}$

In particular $\mathbf{b_1b_2} = \mathbf{b_1} \land \mathbf{b_2}$ if $\mathbf{b_1}, \mathbf{b_2}$ are orthogonal.

Main Idea of Geometric Algebra

Represent *subspaces* of \mathbb{R}^n with algebraic objects in the set \mathbb{G}^n .

If the vectors $b_1, b_2, ..., b_k$ are orthogonal, then $b_i \cdot b_j = 0$ when $i \neq j$.

$$\implies \mathbf{b_1}\mathbf{b_2}...\mathbf{b_k} = \mathbf{b_1} \land \mathbf{b_2} \land ... \land \mathbf{b_k}$$

We call these objects *k*-blades. They represent geometrically our arrows, floor tiles, boxes, hyperboxes, etc. as geometric objects of the set \mathbb{G}^n , $k \leq n$.

If we have an element $\mathbf{I}_n \in \mathbb{G}^n$ that is an *n*-blade, it is called a *pseudoscalar* of \mathbb{G}^n , which is unique up to scalar multiplication.

Logan Lim

 \mathbb{G}^n is a 2^n dimensional vector space formed from \mathbb{R}^n by defining a *geometric product* \mathbf{uv} between vectors in $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Basis elements of \mathbb{G}^3 :

Multivectors*

For the orthonormal basis $\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}$. Let $a_k \in \mathbb{R}$.

$$M = a_0 + \sum_{j=1}^n a_j \mathbf{e_j} + \sum_{k=2}^n \langle M \rangle_k$$

In \mathbb{G}^3 , $M = {}^0\vec{s} + {}^1\vec{v} + {}^2\vec{\mathbf{B}} + {}^3\vec{\mathbf{T}}$.

<u>Result</u>: \mathbb{G}^n is a 2^n dimensional vector space.

Motivation

$z \in \mathbb{C} \iff z = a + bi, i^2 = -1.$

Something Weird*

We know $\mathbf{e_1}\mathbf{e_2} \in \mathbb{G}^3$.

$$\mathbf{e_i}\mathbf{e_j} = \underbrace{\mathbf{e_i} \cdot \mathbf{e_j}}_{0} + \mathbf{e_i} \wedge \mathbf{e_j} = \mathbf{e_i} \wedge \mathbf{e_j} \iff i \neq j.$$

$$(\mathbf{e_1}\mathbf{e_2})^2 = (\mathbf{e_1}\mathbf{e_2})(\mathbf{e_1}\mathbf{e_2})$$
$$= -(\mathbf{e_2}\underbrace{\mathbf{e_1}\mathbf{e_1}}_{1}\mathbf{e_2})$$
$$= -(\mathbf{e_2}\mathbf{e_2})$$
$$= -1$$

Complex Numbers $\mathbb C$

Let $a, b \in \mathbb{R}$.

$$z = a + b(\mathbf{e_1} \wedge \mathbf{e_2})$$

The set of all $z \in \mathbb{G}^n$ satisfying this statement is isomorphic to the complex numbers $(\mathbb{C}, +, \cdot)$.

 \therefore The complex numbers are a special case of $\mathbb{G}^n,$ and have a better geometric interpretation under this framework.

Why Can C So Effortlessly Represent Rotations?

Answer (Geometric algebra):

Because there is an element $i \in \mathbb{C}$ that represents the plane which it is rotating on.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Define $\mathbf{i} = \frac{\text{Unit bivector}}{\text{containing } \mathbf{u}, \mathbf{v}}$.

$$\begin{aligned} \mathbf{u}\mathbf{v} &= \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v} \\ &= |\mathbf{u}||\mathbf{v}|\cos\theta + |\mathbf{u}||\mathbf{v}|\mathbf{i}\sin\theta \\ &= |\mathbf{u}||\mathbf{v}|(\cos\theta + \mathbf{i}\sin\theta) \\ &= |\mathbf{u}||\mathbf{v}|e^{\mathbf{i}\theta} \end{aligned}$$

Which gives the identity $\mathbf{uv} = |\mathbf{u}| |\mathbf{v}| e^{\mathbf{i}\theta}$.

Logan Lim

In geometric algebra every bivector, and as a result every plane, is a representation of the complex numbers. That means, we can perform rotations easily as in \mathbb{C} .

Let $\mathbf{B} \in \mathbb{G}^n$ be a blade. Suppose we want to rotate \mathbf{B} by angle $\theta \in \mathbb{R}$ on a plane represented by the bivector **i**.

For any blade **B** and angle $i\theta$.

$$\mathsf{R}_{\mathbf{i}\theta}(\mathbf{B}) = e^{-\frac{\mathbf{i}\theta}{2}} \mathbf{B} e^{\frac{\mathbf{i}\theta}{2}}$$

And vectors in $\mathbf{u} \in \mathbb{R}^3$ are a special case: $\mathsf{R}_{\mathbf{i}\theta}(\mathbf{u}) = e^{-\frac{\mathbf{i}\theta}{2}} \mathbf{u} e^{\frac{\mathbf{i}\theta}{2}}$ since vectors in \mathbb{G}^n are 1-blades.

Notice that bivectors are our chosen representation of angles, which is by design.

Psuedoscalars

A pseudoscalar of \mathbb{G}^n is an *n*-blade that represents an orthonormal basis for \mathbb{R}^n .

In \mathbb{G}^2 , $\mathbf{i} = \mathbf{e_1}\mathbf{e_2}$ is a unit pseudoscalar. $(\mathbf{i}^{-1} = -\mathbf{i}.)$

The quaternions \mathbb{H} , do not contain a unit pseudoscalar of \mathbb{G}^3 because $\mathbf{I}_3 = \mathbf{e_1}\mathbf{e_2}\mathbf{e_3}$ cannot be expressed as a product of $\hat{\mathbf{i}} = \mathbf{e_2}\mathbf{e_3}, \hat{\mathbf{j}} = \mathbf{e_1}\mathbf{e_3}, \hat{\mathbf{k}} = \mathbf{e_1}\mathbf{e_2}$.

Logan Lim

Why Are They Called Pseudoscalars?

Recall that
$$\sum_{k=0}^n \binom{n}{k} = 2^n = \dim(\mathbb{G}^n).$$

They are called pseudoscalars because they are a basis for a 1-dimensional subspace of \mathbb{G}^n just like the scalar elements of \mathbb{R} are because $\binom{n}{0} = \binom{n}{n} = 1$.

Similarly we have *pseudovectors* which are (n-2)-blades.

Logan Lim

Dual of a Multivector

In $\mathbb{G}^n,$ we can obtain the inverse of a unit pseudoscalar \mathbf{I}_n by reversing all of its elements.

$$\implies \mathbf{I}_n^{-1} = \mathbf{I}_n^{\dagger} = (-1)^{\frac{n(n-1)}{2}} \mathbf{I}.$$

For any k-blade **B**, $\mathbf{B}^* = \mathbf{BI}_n^{-1}$ is an (n - k)-blade that represents the orthogonal complement of the subspace.

For this reason,
$$(\mathbf{u} \wedge \mathbf{v})^* = \mathbf{u} \times \mathbf{v}$$
.

But more generally for multivectors $M, N \in \mathbb{G}^n$ $(M \wedge N)^* = M \cdot N^*, (M \cdot N)^* = M \wedge N^*.$

Logan Lim

Some Housekeeping

$$e_i^2 = ?$$

Some Housekeeping*

$$e_i^2 = ?$$

$$\mathbf{e}_i^2 = egin{cases} 1 \implies \ {\sf Split-complex\ numbers} \ -1 \implies \ {\sf Complex\ numbers} \ 0 \implies \ {\sf Dual\ numbers} \end{cases}$$

See [2]: Video: Siggraph2019 Geometric Algebra, to find out what this means in more detail.

For an algebraic reference of Clifford algebras w.r.t. geometric algebra, see the notes [3].

Logan Lim

Advantage: Linear Independence

With the inner product we know:

 \mathbf{u}, \mathbf{v} are orthogonal $\iff \mathbf{u} \cdot \mathbf{v} = 0.$

With the outer product:

 $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ are linearly independent $\iff \mathbf{v_1} \wedge \mathbf{v_2} \wedge ... \wedge \mathbf{v_n} \neq 0.$

Advantage: Orthogonal Complement of a Subspace of \mathbb{R}^n without Matrix Algebra*

Blades represent subspaces of \mathbb{R}^n

For any blade **B** that represents a subspace $V \subseteq \mathbb{R}^n$. Then $\mathbf{B}^* := \mathbf{B}\mathbf{I}_n^{-1}$ represents the orthogonal complement V^{\perp} where \mathbf{I}_n is a unit pseudoscalar in \mathbb{R}^n .

This is because if $\exists r_j \in \mathbb{R}$, $\mathbf{u} = \sum_{j=1}^n r_j \mathbf{b}_j$ then $\mathbf{u} \wedge \mathbf{b_1} \wedge \mathbf{b_2} \wedge ... \wedge \mathbf{b_n} := 0$, and so if one vector in a wedge product is a linear combination of the others, the whole wedge product goes to 0.

Logan Lim

Advantage: Subspace Membership Test With Blades

Let $\mathbf{B} = \mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_n$ be an *n*-blade representing a subspace $V = \text{span}\{\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_n\}$ and \mathbf{u} be a 1-vector.

$$\mathbf{u} \in V \iff \mathbf{u} \wedge \mathbf{B} = 0$$
$$\iff \mathbf{u} \cdot \mathbf{B}^* = 0$$
$$\mathbf{u} \in V^{\perp} \iff \mathbf{u} \wedge \mathbf{B}^* = 0$$
$$\iff (\mathbf{u} \cdot \mathbf{B})^* = 0$$

This is the more precise reason that blades are considered to represent subspaces [3](pg. 23, Prop. 3.1) and [1](pg. 122, Thm. 7.2) and that the dual of a blade represents the orthogonal complement of that subspace.

Advantage: Determinants are Fundamental*

Let
$$X = \begin{bmatrix} | & | & | \\ \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_n} \\ | & | & | \end{bmatrix}$$
 where $\mathbf{x_j} \in \mathbb{R}^n$. Then
 $\mathbf{x_1} \wedge \mathbf{x_2} \wedge \dots \wedge \mathbf{x_n} = \det(X)\mathbf{I}_n$

where \mathbf{I}_n is a unit pseudoscalar in \mathbb{G}^n .

Manifolds and Tangent Spaces*

Logan Lim

Advantage: Gradient = Divergence + Curl

For a differentiable field $F: M \to \mathbb{G}^n$ on a manifold M:

$$\nabla F = \underbrace{\nabla \cdot F}_{\operatorname{div} F} + \underbrace{\nabla \wedge F}_{\operatorname{curl} F}$$

Advantage: Multivector Integration (Directed Integrals)*

From [4]. Let $M \subseteq \mathbb{R}^n$ be a nice *m*-dimensional manifold with parameterization $\mathbf{x}(u_1, u_2, ..., u_m) : A \subseteq \mathbb{R}^m \to M \subseteq \mathbb{R}^n$. Let $F : M \to \mathbb{G}^m$.

$$\int_{M} d^{m} \mathbf{x} F = \int_{A} (\mathbf{x}_{u_{1}} \wedge \mathbf{x}_{u_{2}} \wedge \dots \wedge \mathbf{x}_{u_{m}}) F dA$$

where $d^m \mathbf{x} = \mathbf{I}_m d^m x$ is the pseudoscalar in the tangent space $T_{\mathbf{p}} \subseteq \mathbb{R}^m$, $\mathbf{p} \in M$ times the infinitesimal *m*-volume $d^m x$.

Fundamental Theorem of Geometric Calculus

Let M be an m-dimensional manifold (oriented, closed, bounded) with boundary ∂M . For a continuous field $F: M \cup \partial M \to \mathbb{G}^n$. [4].

$$\int_M d^m \mathbf{x} \, \partial F = \oint_{\partial M} d^{m-1} \mathbf{x} \, F.$$

This simple statement also has the following special cases¹ of:

- 1) Divergence theorem (and so Gauss' Theorem)
- 2) Curl theorem (and so Green's and Stokes' Theorem)
- 3) Gradient theorem (and so the FT of line integrals)

Logan Lim

¹For more details see [@macdonald2012vector], Chapter 10, Theorem 10.1, pg. 141-160.

(Bonus) Mathematical Party Tricks*

Maxwell's equations becomes *Maxwell's equation*. From [4] pg. 66:

$$\begin{cases} \nabla \cdot \mathbf{e} = 0 \\ \nabla \wedge \mathbf{B} = 0 \\ \nabla \wedge \mathbf{e} = -\partial_t \mathbf{B} \\ \nabla \cdot \mathbf{B} = -\partial_t \mathbf{e} \end{cases} \iff \begin{aligned} (\partial_t + \nabla)F &= 0 \\ F &\coloneqq \mathbf{e} + \mathbf{B} \\ F &\coloneqq \mathbf{e} + \mathbf{B} \end{aligned}$$

The ∂_t is the component of the gradient ∇ of the variable t.

Long story short: For historical reasons, Clifford's work did not become as well known among mathematicians as people like Gibbs.

Video: The Vector Algebra War

Paper: The Vector Algebra War: A Historical Perspective

 \rightarrow "We thus historically review the development of our various vector systems and conclude that Clifford's multivectors best fulfills the goal of describing vectorial quantities in three dimensions and providing a unified vector system for science." [5]

To get from \mathbb{R}^n to \mathbb{G}^n you only have to accept the following:

Closure under the geometric product AB, $A, B \in \mathbb{G}^n$. (Associative, distributive, homogeneous, with unity $1 \in \mathbb{R}$)

For a short and barebones elementary construction of \mathbb{C}^n , see [6].

When Should Geometric Algebra be Taught?

My belief: after the dot product in \mathbb{R}^n and before the discussion of *planes* or systems of equations.

This $\mathbf{u}\mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v}$ is simple enough for first year students and leads to a generalizable framework for complex numbers and quaternions.

Most basic idea: Represent subspaces of \mathbb{R}^n algebraically with *blades*, which are products of orthogonal vectors.

The Most Important Calculation

Let $\mathbf{u} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3$, $\mathbf{v} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + b_3 \mathbf{e}_3$. $a_i, b_i \in \mathbb{R}$. Show as exercise:

$$\begin{aligned} \mathbf{uv} &= (a_1\mathbf{e}_1 + a_2\mathbf{e}_2 + a_3\mathbf{e}_3)(b_1\mathbf{e}_1 + b_2\mathbf{e}_2 + b_3\mathbf{e}_3) \\ &= (a_1b_1 + a_2b_2 + a_3b_3) \\ &+ (a_2b_3 - a_3b_2)\mathbf{e}_2\mathbf{e}_3 \\ &+ (a_3b_1 - a_1b_3)\mathbf{e}_3\mathbf{e}_1 \\ &+ (a_1b_2 - a_2b_1)\mathbf{e}_1\mathbf{e}_2 \\ &= \mathbf{u} \cdot \mathbf{v} + (\mathbf{u} \times \mathbf{v})\mathbf{e}_3\mathbf{e}_2\mathbf{e}_1 \end{aligned}$$

Logan Lim

Great visual introduction in manim:

Video: A Swift Introduction to Geometric Algebra by *sudgylacmoe*.

For a more historical perspective, see:

Video: David Hestenes - Tutorial on Geometric Calculus [7].

Recommended Textbooks for Undergraduates?

[1] Amazon.ca: Linear and Geometric Algebra, Alan Macdonald Video Playlist Linear and Geometric Algebra, Alan Macdonald

[4] Amazon.ca: Vector and Geometric Calculus, Alan Macdonald Video Playlist Geometric Calculus, Alan Macdonald

Why I like them: Short, cheap, concise, filled to the brim with exercises. Associated videos from the author. Fantastic cost/value.

Extras

- **bivector.net**: Awesome website with lots of resources and web animations made using geometric algebra.
- · Colour Palette: #302D2A, #D4AF37, #FF0A60, #156581, #FFEACB.

References

[1] A. Macdonald, Linear and geometric algebra. Alan Macdonald, 2010.

[2] Bivector, Siggraph2019 geometric algebra, (2019).Available: https://www.youtube.com/watch?v=tX4H_ctggYo

[3] D. Lundholm and L. Svensson, "Clifford algebra, geometric algebra, and applications," arXiv preprint arXiv:0907.5356, 2009.

[4] A. Macdonald, Vector and geometric calculus, vol. 12. CreateSpace Independent Publishing Platform, 2012.

[5] J. M. Chappell, A. Iqbal, J. G. Hartnett, and D. Abbott, "The vector algebra war: A historical perspective," IEEE Access, vol. 4, pp. 1997–2004, 2016, doi: 10.1109/ACCESS.2016.2538262.

[6] A. Macdonald, "An elementary construction of the geometric algebra," Advances in applied Clifford algebras, vol. 12, no. 1, pp. 1–6, 2002.

 [7] N. Nominandum, David hestenes - tutorial on geometric calculus, (2015). Available: https://www.youtube.com/watch?v=ltGlUbFBFfc

[8] D. Hestenes and R. Ziegler, "Projective geometry with clifford algebra," Acta Applicandae Mathematica, vol. 23, no. 1, pp. 25–63, 1991.

Logan Lim