Lean Seminar Series Getting Started: Proving with the Lean THEOREM PROVER Interactive Theorem Prover

Session 2 UTSC December 1, 2021

Welcome to the Series Seminar Series, Session 2! While you are getting settled, please enjoy

Symphony in F Major Op. 33 No. 3 II. Allegretto By Paul Wranitzky

Our Research Team : Theorem Proving for Math Education

Gila Hanna Mathematics Education Professor OISE/UT

Kitty Yan Mathematics Education Postdoc Fellow OISE/UT Japleen Kaur Anand Mathematics Education Master's Student OISE/UT

Logan Murphy Computer Science Master's Student CS/UT

Overview

- Revisit the "Malice and Alice" puzzle
- Review tactics and theorems
- A Lean proof using the four tactics
- The Natural Number Game Addition and Multiplication Worlds

- 1. A man and a woman were together in a bar at the time of the murder.
- 2. The victim and the killer were together on a beach at the time of the murder.
- 3. One of Alice's two children was alone at the time of the murder.
- 4. Alice and her husband were not together at the time of the murder.
- 5. The victim's twin was not the killer.
- 6. The killer was younger than the victim.

Man and woman in the bar
Killer and victim on the beach
Child alone

Revisit "Malice and Alice"

Man and woman in the bar
 Reasoning by cases (systematic search)

 $(A-H) \lor (A-B) \lor (A-S) \lor (D-B) \lor (D-H) \lor (D-S)$

Revisit "Malice and Alice"

Man and woman in the bar

□ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S) Contradiction by (4) Contradiction by (3)

$$\rightarrow$$
 (A-B) V (A-S) V (D-B) V (D-H)
cases

- 1. (A-B) \rightarrow (H-D) \vee (H-S) 1.1) (H-D)
- 2. (A-S) 1.2) (H-S)
- 3. (D-B)
- 4. (D-H)

Revisit "Malice and Alice"

Man and woman in the bar

□ Reasoning by cases (systematic search)

(A-H) V (A-B) V (A-S) V (D-B) V (D-H) V (D-S) Contradiction by (4) Contradiction by (3)

$$\rightarrow (A-B) \lor (A-S) \lor (D-B) \lor (D-H)$$
cases
$$(A-B) \lor (A-S) \lor (A-S)$$

- 1. (A-B) → (H-D) \vee (H-S) 1.1) (H-D) (6)&(5)
- 2. (A-S) 1.2) (H-S)
- 3. (D-B)
- 4. (D-H)

Propositional Logic

- Implication: P implies (if P then Q): P → Q
 If and only if: P ↔ Q
 Conjunction (and): P ∧ Q
 Disjunction (or): P ∨ Q
- "If I have two heads, then circles are squares."
 "If I had two heads, then circles would be squares."

Review: The five Peano Axioms of Number Theory

- 1. Zero is a natural number.
- 2. Every natural number has a successor in the natural numbers.
- 3. Zero is not the successor of any natural number.
- 4. The successors of two natural numbers are same iff the two original numbers are the same.*
- 5. If a set contains zero and the successor of every number is in the set, then the set contains the natural numbers.**

□ import mynat.definition

□ imports Peano's definition of the natural numbers {0,1,2,3,4,...}

\Box It gives us:

- \Box a term 0 : mynat, interpreted as the number zero.
- \Box a function succ : mynat \rightarrow mynat, with succ n interpreted as "the number after n".
- □ The principle of mathematical induction.

Review Tactic : Reflexivity

Abbreviation: refl

Used to close a goal of the form "P = Q", where P and Q can be "reduced" to the same value

theorem add_three_ones : 1 + 1 + 1 = 3 :=
begin
refl,
end

Tactic : Rewrite

Abbreviation: rw

Given a hypothesis of the form "A = B", replaces occurrences of A with B, or vice versa.

```
theorem my_nat_theorem

(a b c d : \mathbb{N})

(h1 : a = b)

(h2 : c = d) : a + b + c = b + c + d :=

begin

-- \vdash a + b + c = b + c + d

| rw h1,

-- \vdash b + b + c = b + c + d

| rW \leftarrow h2,

-- \vdash b + b + c = b + c + c

end
```

If n : mynat is in our assumptions,

then induction n with d hd attempts to prove the goal by induction on n, with the inductive assumption in the succ case being hd.

Proofs of Theorems: Addition

add_zero (a : mynat) : a + 0 = a
Use with rw add_zero.
It simplifies a + 0 to a.

I zero_add (a : mynat) : 0 + a = a
Use with rw zero_add.
It simplifies 0 + a to a.

add_succ (a b : mynat) : a + succ (b) = succ (a + b)
Use with rw add_succ.

□ succ_add (a b : mynat) : succ (a) + b = succ (a + b) Use with rw succ add.

Proof of the Theorem: Addition is Commutative

Addition of natural numbers is commutative.

- \Box add_comm (a b : mynat) : a + b = b + a
 - rw add_comm, will just find the first ? + ? it sees and swap it around. Target more specific additions like this: rw add_comm a will swap around additions of the form a + ?, and rw add_comm a b, will only swap additions of the form a + b.

 \Box add_right_comm (a b c : mynat) : a + b + c = a + c + b

Proofs of the Theorem: Addition is Associative

Addition of natural numbers is associative.
 add_assoc (a b c : mynat) : (a + b) + c = a + (b + c)
 rw add_assoc will change (a + b) + c to a + (b + c), but to change it back you will need rw ← add_assoc.
 a + b + c = (a + b) + c
 Note: Get the left arrow by typing \l then the space bar in Lean.

Proofs of Theorems: Multiplication

import mynat.mul

imports the definition of multiplication on mynat

- \Box mul_zero (a : mynat) : a * 0 = 0
- \Box zero_mul (m : mynat) : 0 * m = 0
- \Box mul_succ (a b : mynat) : a * succ (b) = a * b + a
- □ mul_one, one_mul, succ_mul?

□ Addition is distributive over multiplication.

add_mul (a b t : mynat) : (a + b) * t = a * t + b * t

The Natural Number Game

- Addition World
- Multiplication World
- refl
- rw
- induction n with d hd
- simp

Session 3 will be in January, 2022. See you all then!

Thank You!