

Session 2 UTSC
December 1, 2021

Welcome to the $\lfloor\forall$ N Seminar Series, Session 2! While you are getting settled, please enjoy

Symphony in F Major
Op. 33 No. 3 II. Allegretto
By Paul Wranitzky

Our Research Team : Theorem Proving for Math Education

Gila Hanna
Mathematics Education
Professor OISE/UT

Kitty Yan
Mathematics Education
Postdoc Fellow OISE/UT

Japleen Kaur Anand Mathematics Education
Master's Student OISE/UT

Logan Murphy Computer Science Master's Student CS/UT

Overview

- Revisit the "Malice and Alice" puzzle
- Review tactics and theorems
- A Lean proof using the four tactics
- The Natural Number Game - Addition and Multiplication Worlds

Revisit "Malice and Alice"

1. A man and a woman were together in a bar at the time of the murder.
2. The victim and the killer were together on a beach at the time of the murder.
3. One of Alice's two children was alone at the time of the murder.
4. Alice and her husband were not together at the time of the murder.
5. The victim's twin was not the killer.
6. The killer was younger than the victim.
\square Man and woman in the bar
\square Killer and victim on the beach
\square Child alone

Revisit "Malice and Alice"

- Man and woman in the bar

Reasoning by cases (systematic search)
$(A-H) \vee(A-B) \vee(A-S) \vee(D-B) \vee(D-H) \vee(D-S)$

Revisit "Malice and Alice"

Man and woman in the bar
\square Reasoning by cases (systematic search)
$(A-H) \vee(A-B) \vee(A-S) \vee(D-B) \vee(D-H) \vee(D-S)$
Contradiction by (4) Contradiction by (3)
$\rightarrow(A-B) \vee(A-S) \vee(D-B) \vee(D-H)$
cases

1. $(A-B) \rightarrow(H-D) \vee(H-S) \quad 1.1)(H-D)$
2. (A-S)
1.2) (H-S)
3. (D-B)
4. (D-H)

Revisit "Malice and Alice"

Man and woman in the bar
\square Reasoning by cases (systematic search)
$(A-H) \vee(A-B) \vee(A-S) \vee(D-B) \vee(D-H) \vee(D-S)$
Contradiction by (4) Contradiction by (3)
$\rightarrow(A-B) \vee(A-S) \vee(D-B) \vee(D-H)$
cases

1. $(A-B) \rightarrow(H-D) \vee(H-S) \quad 1.1)(H-D) \quad(6) \&(5)$
2. $(A-S)$
1.2) ($\mathrm{H}-\mathrm{S}$)
3. (D-B)
4. (D-H)

Propositional Logic

\square Implication: P implies (if P then Q): $P \rightarrow Q$
If and only if: $P \leftrightarrow Q$
\square Conjunction (and): $P \wedge Q$
\square Disjunction (or): $P \vee Q$
\square "If I have two heads, then circles are squares."
\square "If I had two heads, then circles would be squares."

Review: The five Peano Axioms of Number Theory

1. Zero is a natural number.
2. Every natural number has a successor in the natural numbers.
3. Zero is not the successor of any natural number.
4. The successors of two natural numbers are same iff the two original numbers are the same.*
5. If a set contains zero and the successor of every number is in the set, then the set contains the natural numbers.**

Peano's Axioms in

\square import mynat.definition
\square imports Peano's definition of the natural numbers

$$
\{0,1,2,3,4, \ldots\}
$$

\square It gives us:
\square a term 0 : mynat, interpreted as the number zero.
\square a function succ : mynat \rightarrow mynat, with succ n interpreted as "the number after n".
\square The principle of mathematical induction.

Review Tactic : Reflexivity

Abbreviation: refl
Used to close a goal of the form " $\mathrm{P}=\mathrm{Q}$ ", where P and Q can be "reduced" to the same value
theorem add_three_ones : $1+1+1=3$:= begin
refl,
end

Tactic: Rewrite

Abbreviation: rw
Given a hypothesis of the form "A = B", replaces occurrences of A with B, or vice versa.

```
theorem my_nat_theorem
(a b c d : \(\mathbb{N}\) )
(h1 : a = b)
\(\left(h_{2}: c=d\right): a+b+c=b+c+d:=\)
begin
-- \(\vdash \mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{b}+\mathrm{c}+\mathrm{d}\)
        rw h1,
-- \(\vdash \mathrm{b}+\mathrm{b}+\mathrm{c}=\mathrm{b}+\mathrm{c}+\mathrm{d}\)
        \(r w \leftarrow h 2\),
-- \(\vdash\) b + b + \(\mathrm{c}=\mathrm{b}+\mathrm{c}+\mathrm{c}\)
end
```


Tactic: Induction

If n : mynat is in our assumptions, then induction n with d hd attempts to prove the goal by induction on n, with the inductive assumption in the succ case being hd.

Proofs of Theorems: Addition

\square add_zero (a : mynat) : a $0=$ a
Use with rw add zero.
It simplifies a +0 to a.
\square zero_add (a : mynat) : $0+\mathrm{a}=\mathrm{a}$
Use with rw zero add.
It simplifies $0+a$ to a.

Proofs of Theorems: Addition

\square add_succ (ab:mynat) : a + succ (b) = succ $(a+b)$ Use with rw add succ.
\square succ_add (ab: mynat) : succ (a) +b=succ (a+b) Use with rw succ_add.

Proof of the Theorem: Addition is Commutative

Addition of natural numbers is commutative.
\square add_comm (a b : mynat) : $a+b=b+a$
rw add_comm, will just find the first ? + ? it sees and swap it around. Target more specific additions like this: rw add_comm a will swap around additions of the form a + ?, and rw add_comm a b, will only swap additions of the form $a+b$.
\square add_right_comm (a b c : mynat) : $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}+\mathrm{c}+\mathrm{b}$

Proofs of the Theorem: Addition is Associative

\square Addition of natural numbers is associative. add_assoc (a b c : mynat) : $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$
rw add_assoc will change $(a+b)+c$ to $a+(b+c)$, but to change it back you will need $r w \leftarrow$ add_assoc.
$\square a+b+c=(a+b)+c$
\square Note: Get the left arrow by typing $\backslash \backslash$ then the space bar in Lean.

Proofs of Theorems: Multiplication

\square import mynat.mul
imports the definition of multiplication on mynat
\square mul_zero (a : mynat) : a * $0=0$
\square zero_mul (m : mynat) : 0 * $m=0$
\square mul_succ (a b : mynat) : a * $\operatorname{succ}(\mathrm{b})=\mathrm{a} * \mathrm{~b}+\mathrm{a}$
\square mul_one, one_mul, succ_mul?
\square Addition is distributive over multiplication. add_mul (abt : mynat) : $(a+b)$ * $t=a * t+b * t$

The Natural Number Game

- Addition World
- Multiplication World
- refl
- rw
- induction n with d hd
- simp

The $\lfloor\neg N$ Seminar Series

Session 3 will be in January, 2022.
See you all then!

