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Logic Is...

”... the study of formal languages, and connections between
those languages, and their structures (interpretations)”
Thomas Scanlon

”... the study of reasoning; and mathematical logic is the
study of the type of reasoning done by mathematicians”
Joseph Schoenfield

The main fields of mathematical logic are: Set theory, Proof theory,
Model theory, and Recursion or Computability theory.



Early Names in Logic: Hilbert

Hilbert, by way of his program, contributed heavily to the
development of the formalist school of the philosophy of
mathematics.



Early Names in Logic: Gödel

The Completeness Theorem, The Incompleteness Theorems, The
Compactness Theorem



Languages

Definition
A first-order language, L is specified by,

I A set of predicate symbols of various -arities, PredL
I A set of function symbols of various -arities, FuncL
I A set of constant symbols, ConstL
I Whether or not we include =

Note that PredL,FuncL,ConstL symbols are not necessarily
non-empty.



Language Example

Example. Denote the language of arithmetic as LA with equality
as:

I The constant symbol o,

I A unary function symbol, s,

I Two binary function symbols, +, ×,

I One binary relation/predicate symbol, ≤



Interpretation Functions

Definition
A universe, U , is a non-empty set.

Definition
Given a universe U , an interpretation function I for a language L
is a function such that,

I For any n-ary P ∈ PredL, I(P) = S ⊂ Un

I For any n-place f ∈ FuncL, I(f ) = F , where F : Un → U is an
n-ary function on U .

I For any c ∈ ConstL, I(c) = x , for some x ∈ U .



Structure

Definition
A structure for a language L, is a pair M = 〈U , I〉 where U
denotes the universe, and I denotes an interpretation function for L.



A Simple Example

Example. Let L = {≤} be a language with just one binary symbol.
Then a structure for L could be:

I M = 〈Q, I〉 where I(≤) is the standard order on Q
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Example. Let L = {≤} be a language with just one binary symbol.
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A Simple Example

Example. Let L = {≤} be a language with just one binary symbol.
Then a structure for L could be:

I M = 〈Q, I〉 where I(≤) is the standard order on Q
I N = 〈Q, I〉 where I(≤) is the standard ordering on Q, mod 3.

I O = 〈Q, I〉 where I(≤) is the lexographic ordering on Q
indexed by the first element.
That is, the fraction representations of elements of Q are
represented as (a, b) such that (a, b) ≤ (c , d)⇔ b ≤ d .
Then 3

2 ≤
1
3 since (3, 2) ≤ (1, 3) on the first element.



A Structure for Arithmetic

Example. Let LA denote the language of arithmetic as in the
previous example. Then let M = 〈U , I〉. Then we have,

I U = N,

I I(o) = 0,

I I(≤) = {(m, n) | m, n ∈ N,m ≤ n}
I I(s)(n) = n + 1, n ∈ N
I I(+)(m, n) = m + n, n ∈ N
I I(×)(m, n) = m × n, m, n ∈ N

We’ll call M the standard model for arithmetic. Since these are
the standard interpretations of these symbols, we can write:
M = 〈N, 0,S ,+,×, <〉.



Why Truth?

How do we determine truth in zero-order logic?
How do we determine truth in first-order logic?
Consider ∀x∀y(P(x , y)→ ∃z(P(x , z) ∧ P(z , y))).



A Translation.

Example. ϕ := ∃x∀y(x ≤ y). Then, with M as the standard
model for arithmetic, we have,

ϕ is true relative to M
iff

there exists x ∈ N such that for every y ∈ N, x ≤ y .



A Theory of Truth

Definition
Let M = 〈U , I〉. We define the relation M � ϕ to mean that M
satifies ϕ if and only if the translation of ϕ as determined by M is
true.



�

Definition
Let Γ denote some set of sentences, and ϕ some sentence. We write
Γ � ϕ if and only if for any structure M if ∀γ ∈ Γ, M � γ, then
M � ϕ. We say that ϕ is a logical consequence or is
semantically implied by Γ.



`

Definition
A sentence ϕ is provable from a set of sentences Γ if there is some
finite sequence 〈γ1, γ2, . . . , γn〉 of sentences such that γn = ϕ and
any other γi is the result of an application of a valid rule of
deduction

In other words - Γ ` ϕ if and only if there exists a proof of ϕ from Γ.



”Has a Model”

Definition
For some set of sentences Γ, and structure M, if for every sentence
γ ∈ Γ, M � γ, then we say that M is a model of Γ, or that Γ ”has
a model”.



Consistency of a theory

Definition
A set of sentences Γ is consistent if and only if there is no sentence
ϕ such that M ` ϕ and M ` ¬ϕ.



Soundness!

”If you can prove it, then it’s true”

Theorem (The Soundness Theorem)

For any set of sentences Γ, and any sentence ϕ, if Γ ` ϕ then Γ � ϕ.

Theorem (The Soundness Theorem 2)

Given some set of sentences Γ, if Γ has a model, then Γ is consistent.



The Completeness Theorem

Theorem (Gödel’s Completeness Theorem, 1930)

If a theory Γ is consistent, then Γ has a model.



The Compactness Theorem

Recall: A theory ”has a model” if there is some model M such that
for any γ ∈ Γ, M � γ.

Theorem (The Compactness Theorem)

A set of sentences Γ has a model if and only if every finite subset of
Γ has a model.



A Proof of the Compactness Theorem

Proof.
I (⇐). Suppose for contradiction that every finite subset of Γ,

say Γ0 has a model, but Γ does not.

I Then, by the contrapositive of the Completeness Theorem, we
have that Γ is inconsistent.

I So, there exists some sentence ϕ such that Γ ` ϕ and Γ ` ¬ϕ.

I Thus there are some finite sets of sentences Γ′, Γ′′ ⊆ Γ such
that Γ′ ` ϕ and Γ′′ ` ¬ϕ.

I Then, clearly, Γ′ ∪ Γ′′ ` ϕ, and Γ′ ∪ Γ′′ ` ¬ϕ.

I But note that the union of two finite sets is still finite, and so
Γ′ ∪ Γ′′ is a finite set that proves a contradiction.

I So by the contrapositive of the soundness theorem, Γ′ ∪ Γ′′ is a
finite subset of Γ that does not have a model. Contradiction.



Problem Statement

Theorem (Finite Four Colour Theorem, 1976)

Any map of a finite number of countries can be coloured by four
colours such that no two adjacent countries have the same colour.







The Proof

Theorem (Infinite Four Colour Theorem)

Any infinite map of a finite number of countries can be coloured by
four colours such that no two adjacent countries have the same
colour.

Proof.
Suppose the finite four colour theorem holds. Then, define the set
of sentence letters: {C i

n | n ∈ N, 1 ≤ i ≤ 4} such that C i
n denotes

the nth country coloured with the ith colour.
So then, let Σ be the set of sentences:

1. C 1
n ∨ C 2

n ∨ C 3
n ∨ C 4

n , for any n ∈ N.

2. ¬(C i
n ∧ C j

n), 1 ≤ i < j ≤ 4, for any n ∈ N.

3. ¬(C i
n ∧ C i

m), where n,m are adjacent countries.

Clearly, then, any finite subset of Σ is satisfiable by the finite four
colour theorem. So, by the Compactness theorem, Σ is
satisfiable.



A similar problem

Suppose that you can tile finite subsets of R2 (the plane) with some
set of polyominoes. Can you tile the entire plane with the same set?
More precisely,

Theorem
Divide R2 into disjoint unit squares. Let T be a tiles. If for every
finite S ⊂ R2, there exists a tiling with T-tiles such that S is a
subset of the tiling, then there is a tiling of R2 with T-tiles.

Proof.
Exercise! Hint: It uses compactness.



The Ax-Grothendieck Theorem

Theorem (Ax-Grothendieck)

Every injective polynomial map from Cn to Cn is surjective.



Algebraic Preliminaries

Definition
A field F is algebraically closed if and only if every non-constant
polynomial with coefficients from F has a root in F .

Definition
The characteristic of a field F , denoted char(F ), is the smallest n
such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

= 0

where 1 is the multiplicative identity, and 0 is the additive identity
of the field. We’ll denote this sentence by 1 · n = 0. If no such n
exists, we say the field has characteristic 0.



Algebraic Preliminaries

Definition
The language of fields LF := {+, ·, 0, 1}. Then the theory/axioms
of algebraically closed fields (of characteristic p) are denoted ACFp,
consisting of the field axioms, an axiom for algebraic closure, and an
axiom that says the field has char p.

If a field has characteristic p, then the axiom is that 1 · p = 0. But
if a field has characteristic 0, then for each prime p, there is an
axiom denoting that the field isn’t of characteristic p. More
specifically, for any prime p, 1 · p 6= 0 ∈ ACFp.



Important Theorem!

Definition
A theory T is complete if and only if for any sentence ϕ, either
T ` ϕ or T ` ¬ϕ.

Theorem
ACFp is complete for any prime p, or p = 0.

So, ACFp being complete means that ϕ, ACFp � ϕ or
ACFp ` ¬ϕ.



Another important theorem

Theorem (Lefschetz Principle)

Given a sentence ϕ in the language of fields, any sentence that is
true in ACF0 (specifically C in our case) if and only if ϕ is true in
ACFp for arbitrarily high prime p.



A Proof of Lefschetz Principle
We present a proof that if for arbitrarily large prime p, ACFp � ϕ
then ACF0 � ϕ. The converse is similar.

Proof.
I Define T = ACF0 ∪ ϕ. Then, let T0 be a finite subset of T .

I Then T0 contains finitely many sentences of the form
”p · 1 6= 0” for primes p. Each sentence says that ”This field is
not characteristic p”.

I So for large enough p, there is no such sentence in T0. So
choose such a p.

I Then by assumption, there is some model K such that
K � ACFp ∪ ϕ. So then K � T0.

I Then, by compactness, there is some model K ′ such that
K ′ � T .

I So K ′ � ACF0 and K ′ � ϕ. Thus, ACF0 6� ¬ϕ and so by
completeness of ACF0, ACF0 � ϕ



The Ax-Grothendieck Theorem

Theorem (Ax-Grothendieck)

Every injective polynomial map from Cn to Cn is surjective.

Lemma
Let F̄p denote the algebraic closure of a p-element field. Then, any
injective polynomial mapping (F̄p)n → (F̄p)n is surjective.



Proof of Ax-Grothendieck

Theorem (Ax-Grothendieck)

Every injective polynomial map from Cn to Cn is surjective.

Proof.
I First, let Φn,d be the sentence such that for any field K :

K � Φn,d if and only if every injective polynomial of degree d
from Kn → Kn is surjective

I Then, we have that for any n, d , F̄p � Φn,d for some prime p
by the lemma on the previous slide.

I So by the Lefschetz principle, since it is the case that
F̄p � Φn,d and F̄p is an ACFp theory, we must have that any
ACF0 � Φn,d

I So specifically C � Φn,d . So every injective polynomial on
Cn → Cn is surjective.



End of talk.

Here are some references for further learning:

1. MATC09, PHLC51, PHLD51, PHL354

2. Enderton, An Introduction to Mathematical Logic

3. Marker, Model Theory: An Introduction

4. Hodges, A Shorter Model Theory

5. Chang & Keisler, Model Theory

6. Marker, Model Theory of Fields

7. Victor Zhang’s 2015 UChicago REU paper

8. Ben Call’s 2015 UChicago REU paper


	What is Mathematical Logic?
	Languages, Structures, Truth
	Languages
	Structures
	Truth
	 and 

	Soundness, Consistency, and Completeness
	The Completeness Theorem
	The Compactness Theorem

	Fun Problems!
	Finite Four Colour implies Infinite Four Colour
	The Ax-Grothendieck Theorem


