Ray Tracing and the Light Transport Equation

Ben Chislett

benjamin.chislett@mail.utoronto.ca

June 9, 2021

Ben Chislett (UTSC)

Ray Tracing and Light Transport

June 9, 2021 1 / 28

2 The What: Defining the Light Transport Equation

3 The How: Monte Carlo Integration and Ray Tracing

• Why?

- "CGI" in films
- Realistic animation
- Video games

• Why?

- "CGI" in films
- Realistic animation
- Video games
- How?
 - How do we generate realistic images?
 - How do we make it efficient?

Defining the Light Transport Equation

Ben Chislett (UTSC)

Ray Tracing and Light Transport

June 9, 2021 4 / 28

What do we see? Light!

So, let's try to model how light works.

Wait... how *does* light work?

Conservation of Energy

Light out - Light in = Light emitted - Light absorbed

Idea:

• If we can model the light coming out of a point, we can sample all the points we see and generate an image!

Paint all the things! Everything has a colour, so let's model that alone and see what we get.

First Light Model $L_o(x) = f(x)$

A naive first attempt

Not bad! But we can do better.

Ben Chislett (UTSC)

Light Model: with Emittance

$$L_o(x) = L_e(x) + f(x)$$

Ben Chislett (UTSC)

Ray Tracing and Light Transport

Light doesn't just *exist* at a point, it depends on how you look at it!

Light Model: with Perspective

$$L_o(x,\omega_o) = L_e(x,\omega_o) + f(x,\omega_o)$$

So, have we got it now?

Light doesn't just exist at a point, it depends on how you look at it!

Light Model: with Perspective

$$L_o(x,\omega_o) = L_e(x,\omega_o) + f(x,\omega_o)$$

So, have we got it now? Not quite. What about the light coming *in*?

Light Model: with Light in

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} L_i(x,\omega_i) d\omega_i$$

Where did *f* go?

Light Model: with Reflectance

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} f(x,\omega_o,\omega_i) L_i(x,\omega_i) d\omega_i$$

Let's re-purpose our friend f...

Refining the model: The Scattering Distribution Function

Light Model: with a Weakening Factor

 $L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} f(x,\omega_o,\omega_i) L_i(x,\omega_i) \cos(\theta_i) d\omega_i$

What the heck is *light flux*?

The Light Transport Equation

$$L_o(x,\omega_o,\lambda,t) = L_e(x,\omega_o,\lambda,t) + \int_{\Omega} f(x,\omega_o,\omega_i,\lambda,t) L_i(x,\omega_i,\lambda,t) cos(\theta_i) d\omega_i$$

Almost there... just need to cover wavelengths of light, and change over time.

The Light Transport Equation

$$L_o(x,\omega_o,\lambda,t) = L_e(x,\omega_o,\lambda,t) + \int_{\Omega} f(x,\omega_o,\omega_i,\lambda,t) L_i(x,\omega_i,\lambda,t) cos(\theta_i) d\omega_i$$

More caveats we'll leave to the engineers:

- Polarization
- Interference and Fluorescence
- Various fun quantum effects

Evaluating the LTE: Ray Tracing

Ben Chislett (UTSC)

Ray Tracing and Light Transport

June 9, 2021 17 / 28

So, we've got to evaluate a nasty integral. No analytic techniques will suffice, so we must turn to statistics to build an approximation.

Monte Carlo Integration

$$\int_{\Omega} F(x) dx \approx V \frac{1}{N} \sum_{i=1}^{N} F(x_i)$$

Monte Carlo Ray Tracing

Take samples from our integral until L_o converges.

• How do we evaluate L_i ?

Monte Carlo Ray Tracing

Take samples from our integral until L_o converges.

- How do we evaluate L_i ?
- Recursively!

Continue to expand the sample of L_i until it goes to zero or escapes the scene.

Monte Carlo Path Tracing

Ben Chislett (UTSC)

Ray Tracing and Light Transport

The two main problems in applying these techniques in practice:

Bias

$$L_o(x,\omega_i,\lambda,t) + \beta(x,\omega_i,\lambda,t)$$

Variance

$$\delta Q_N = \sqrt{Var(Q_N)} = V \frac{\sigma_N}{\sqrt{N}}$$

Ben Chislett (UTSC)

Ray Tracing and Light Transport

June 9, 2021 22 / 28

Better samples = Faster convergence. What makes a good sample?

Importance Sampling

$$Q_N = \frac{1}{N} \sum_{i=1}^N \frac{F(x_i)}{p(x_i)}$$

Better samples = Faster convergence. What makes a good sample?

Importance Sampling

$$Q_N = \frac{1}{N} \sum_{i=1}^N \frac{F(x_i)}{p(x_i)}$$

$$F(x_i) = f(x_i, \omega_o, \omega_i, \lambda, t) * L_i(x_i, \omega_i, \lambda, t) * cos(\theta_i)$$

How can we choose a good distribution?

War on Variance: Importance Sampling

Multiple Importance Sampling

$$\int F(x)G(x)dx \approx \frac{1}{N_F} \sum_{i=1}^{N_F} \frac{F(x_i)G(x_i)w_F(x_i)}{p_F(x_i)} + \frac{1}{N_G} \sum_{i=1}^{N_G} \frac{F(x_i)G(x_i)w_G(x_i)}{p_G(x_i)}$$

Sample a product separately, by sampling each of the terms independently. Provably good results!

War on Variance: Multiple Importance Sampling

Radius

Sampling the light source

Sampling the BRDF

MIS

June 9, 2021 26 / 28

A Note on Parallelism

Ray Tracing is part of a class of problems called *Embarrassingly Parallel* tasks.

How do we take advantage of the parallel nature of this problem?

A Note on Real-Time

It is not feasible to take hundreds of samples each frame for real-time applications. How can we take advantage of the Ray Tracing framework without spending so much time?