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The Set-Up

Multi-hop routing algorithms describes a scheme for
communication between devices.

Main Goals for a Multi-hop Routing Scheme:

Every device can communicate with any other device

Want to forward messages efficiently

Main Concerns When Routing:

Memory capacity constraints

Over-reliance on specific nodes in the network

Scalability

Length of routing path
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The Premise of VRR

Utilizing two different networks, the physical network and the
virtual network, VRR determines routing paths between nodes
independent of their location.

VRR schemes can be modelled by a pair of graphs, the physical
network and the virtual network.

Figure: The underlying physical network and the virtual overlay (image
from Wikipedia)
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The Physical Network

An undirected graph G = (V ,E )

Vertices in V are called nodes, |V | = N

Edges denote physical links

G must be connected

(u, v) ∈ E is a physical link
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The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



The Virtual Network

Definition 1

Given a physical network G = (V ,E ), we can construct a virtual
network Gv = (V ,Ev ), where Ev denotes virtual links.

Virtual links are formed by chaining physical links (and/or
preexisting virtual links) that share an endpoint.

We allow chains of length 1, so physical links can also be
considered virtual links

If 〈u, v〉 ∈ Ev , then 〈v , u〉 ∈ Ev .

〈u, z〉 ∈ Ev is a virtual link, where 〈u, z〉 = vl((u, v), (v , z))

Amalrose Vayalinkal VRR



Identifier Space

To set up routing, we need an identifier space Ω:

well-ordered set

distance function d

Also need a function that assigns each node to a unique id ∈ Ω
In VRR, we always take Ω ⊆ N and assume the function assigns id
randomly
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Node to Id Mapping

Node to Id Mapping

We often use v or id(v) to refer to
the same node
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Constructing the Ring

For each node v ∈ V , we set up a virtual link between v and the
node with the next largest identifier v+.

i.e. 〈v , v+〉 ∈ Ev

id(v+) = min{id(x) | x ∈ V , id(x) > id(v)}

If id(v) is the largest, then v+ is the node in V with the smallest id

Note: It is always possible to create a virtual link between any two
nodes in V since we require G to be connected
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For Example...

Physical Network

〈0, 1〉 = vl(0, 1)

〈1, 3〉 = vl((1, 0), (0, 3))

〈3, 4〉 = vl(3, 4)

〈4, 0〉 = vl((4, 3), (3, 0))
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Another Node?

If we add another node then

Physical Network

Virtual Network

〈1, 2〉 = vl(〈1, 3〉, (3, 2))

〈2, 3〉 = vl(2, 3)
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Physical and Virtual Neighbours

Physical Network

P3 = {0, 4, 2}
V3 = {4, 2}

Virtual Network
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Routing Table

Definition 2

The routing table at node u ∈ V is a collection of 4-tuples (from,
to, next hop, prev. hop) from V × V × V × V of routing paths
that go through node u.

Each such 4-tuple is called an ”entry” in the routing table of u

The prev. hop and next hop nodes must be physical
neighbours of u

There is one (and ONLY one) entry in the routing table of u
for any path that starts, ends, or passes through u

Endu denotes the set of all nodes in the ”to” or ”from”
coordinate in an entry on the routing table of u other than u
itself
i.e. all the nodes we know how to travel to from u
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For Example...

Physical Network

Virtual Network

Routing Table at 3
from to next hop prev. hop

2 3 - 2
4 3 - 4
0 3 - 0
4 0 0 4
1 2 2 0

Routing Table at 2
from to next hop prev. hop

2 3 3 -
2 1 3 -

Once the physical network is
fixed, the routing table is fixed
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The Routing Algorithm

The information each node has access to:

Its own routing table
The node to id mapping

We can always route along the ring to our target.
Suppose we want to send a message from node 2 to node 0.
What should 〈2, 0〉 be?

Virtual Network
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First Attempt

V2 = {3, 1}

d(1, 0) < d(3, 0) =⇒ T ′ = 1
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Second Attempt?
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Second Attempt?
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Comparing at Each Node

V3 = {4, 1}

d(4, 0) < d(2, 0) =⇒ T ′ = 4
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Third (And Hopefully Last) Attempt
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Using the Routing Table

Routing Table at 3
from to next hop prev. hop

2 3 - 2
4 3 - 4
0 3 - 0
4 0 0 4
1 2 2 0

End3 = {0, 1, 2, 4}
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The Actual Routing Path

Routing Table Entry for 0

from to next hop prev. hop

4 0 0 4
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The Actual Routing Path

Routing Table Entry for 0

from to next hop prev. hop

4 0 0 4
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Greedy Transition Vs. Non-Greedy Transition

Routing Table at 3

from to next hop prev. hop

2 3 - 2
4 3 - 4
0 3 - 0
4 0 0 4
1 2 2 0

V3 = {4, 2}, T ′ = 0

Routing Table at 2

from to next hop prev. hop

2 3 3 -
2 1 3 -

V2 = {1, 3}, T ′ = 1

T ′ /∈ V3

Greedy Transition
T ′ ∈ V2

Non-Greedy Transition
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Summarizing The Routing Algorithm

Given a source-target pair s and t, we can summarize the routing
algorithm as follows:

At the source node s, we pick an intermediate target T ′ = x1
from Ends and forward the message to the next hop node u
towards x1

At u, we consider all the elements of Endu. If we find a better
node x2 ∈ Endu, then we change the intermediate target and
set T ′ = x2 and forward to the next hop node towards x2

If no such x2 exists in Endu, then we forward the message
along to the next hop node towards T ′ = x1

Once we reach an intermediate target xi , we set the
intermediate target from Endxi

Amalrose Vayalinkal VRR



Summarizing The Routing Algorithm

Given a source-target pair s and t, we can summarize the routing
algorithm as follows:

At the source node s, we pick an intermediate target T ′ = x1
from Ends and forward the message to the next hop node u
towards x1

At u, we consider all the elements of Endu. If we find a better
node x2 ∈ Endu, then we change the intermediate target and
set T ′ = x2 and forward to the next hop node towards x2

If no such x2 exists in Endu, then we forward the message
along to the next hop node towards T ′ = x1

Once we reach an intermediate target xi , we set the
intermediate target from Endxi

Amalrose Vayalinkal VRR



Summarizing The Routing Algorithm

Given a source-target pair s and t, we can summarize the routing
algorithm as follows:

At the source node s, we pick an intermediate target T ′ = x1
from Ends and forward the message to the next hop node u
towards x1

At u, we consider all the elements of Endu. If we find a better
node x2 ∈ Endu, then we change the intermediate target and
set T ′ = x2 and forward to the next hop node towards x2

If no such x2 exists in Endu, then we forward the message
along to the next hop node towards T ′ = x1

Once we reach an intermediate target xi , we set the
intermediate target from Endxi

Amalrose Vayalinkal VRR



Summarizing The Routing Algorithm

Given a source-target pair s and t, we can summarize the routing
algorithm as follows:

At the source node s, we pick an intermediate target T ′ = x1
from Ends and forward the message to the next hop node u
towards x1

At u, we consider all the elements of Endu. If we find a better
node x2 ∈ Endu, then we change the intermediate target and
set T ′ = x2 and forward to the next hop node towards x2

If no such x2 exists in Endu, then we forward the message
along to the next hop node towards T ′ = x1

Once we reach an intermediate target xi , we set the
intermediate target from Endxi

Amalrose Vayalinkal VRR



Summarizing The Routing Algorithm

Given a source-target pair s and t, we can summarize the routing
algorithm as follows:

At the source node s, we pick an intermediate target T ′ = x1
from Ends and forward the message to the next hop node u
towards x1

At u, we consider all the elements of Endu. If we find a better
node x2 ∈ Endu, then we change the intermediate target and
set T ′ = x2 and forward to the next hop node towards x2

If no such x2 exists in Endu, then we forward the message
along to the next hop node towards T ′ = x1

Once we reach an intermediate target xi , we set the
intermediate target from Endxi

Amalrose Vayalinkal VRR



What exactly is a better node?

x is a better node if d(x ,T ) < d(T ′,T ), where T is the
target, T ′ is the intermediate target

Note: We want to choose the “best” possible x ,
i.e. the one that gets us closest to the target
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Some Edge Cases
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Some Edge Cases
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Remarks About the Intermediate Target(s)

Each new intermediate target T ′ is always closer to the target
T than the previous one.

At any node u, the current intermediate target is closer to the
target than u or equidistant

Once we set T ′ = T , there are no more new intermediate
targets
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Properties of This Routing Algorithm

Proposition 1

VRR schemes using greedy routing exhibit no loops

Proof: If we have a loop, we must visit the same node twice, say v .

At time 1 At time 2
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Benefits of VRR

Each node only stores local info; less memory used relative to
increase in size of physical network

Flexible since adding/ removing a node only affects nodes
that had that node in their routing table
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Limitations of VRR

Routing path may not be the shortest path

Definition 3

We define stretch as the ratio between the actual routing path
and the shortest possible path on the physical network

Consider the following example
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Stretch

Suppose again that we are routing 〈2, 0〉. Our ring:
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The Actual Routing Path

from to next hop prev. hop

2 3 3 -
2 1 3 -

from to next hop prev. hop

3 5 5 -
3 4 4 -
3 2 2 -
2 1 4 2
4 5 5 4

from to next hop prev. hop

4 3 3 -
4 1 2 -
4 5 3 -

d(1, 0) < d(3, 0)
=⇒ T ′ = 1

d(5, 0) ≮ d(1, 0)
=⇒ T ′ = 1
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Stretch

LA = 5

LS = 3

Stretch is 5:3
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Current Research: Careful Study of Stretch

The questions:

How can we study stretch?

How does stretch change as N −→∞
What other factors might affect stretch?

The issues:

Setting up a good model for the physical network

Computing the expected path length
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The virtual network for large N
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Physical Network as a Ring

When the physical network is also a ring, we call it a physical
ring.

There are only two physical neighbours

We can consider the physical ring a permutation of the virtual
ring
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Stretch on a Ring

Proposition 2

If the physical network is a ring of N > 3 nodes, then the
maximum stretch for any routing path is N−2

2
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Proof of Prop’n 2

Proof: Consider source-target pair S and T . Suppose that, on the
physical ring, d(S ,T ) = k ≥ 2

Figure: The Physical Ring

By prop’n 1, the actual routing path either travels the minor arc or
the major arc.
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Proof Cont’d

Figure: The Physical Ring

If we travel the minor arc then

LA
LS

=
k

k
= 1

If we travel the major arc then

LA
LS

=
N − k

k

This ratio is maximized when
k = 2
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Limitations of the Physical Ring

Not practical since relatively poor connectivity

Even the shortest paths are long
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Future Directions

Explore other physical network models

Trying to formulate routing algorithm into Markov Chain
process or as (sub)martingales and apply related theorems
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The End

Thanks for listening!
Any questions?

Amalrose Vayalinkal VRR



For Further Reading

To better understand the mechanics of VRR:
M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A.
Rowstron. Virtual ring routing: Network routing inspired by DHTs.
In ACM annual conference of the Special Interest Group on Data
Communication (SIGCOMM), pages 351–362, 2006.

To read about other proofs related to VRR:
Malkhi, D., Sen, S., Talwar, K., Werneck, R. F., and Wieder, U.
(2009). Virtual ring routing trends. In Proceedings of the 23rd
international conference on distributed computing, Berlin,
Heidelberg.
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