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Classifying Mathematical Objects

Figure: When understanding mathematical
objects, such as Groups, finding lots of different
examples helps understand such objects.

Figure: When a set of examples is ”nice
enough”, like Finite dimensional Vector Spaces,
we can list off each one. (Every Finite
Dimensional VS over R is Rn)

▶ An important goal in Mathematics and Mathematical research is coming up with
”distinct” examples of different mathematical structures, such as Groups or
Manifolds.

▶ Sometimes, if a structure can be understood well enough, we can make an
”infinite list” of each of the objects.

▶ For those who have taken Linear Algebra, every Vector Space of dimension n over
a field F is ”structurally the same” as one of {0},F,F2,F3 . . .Fn

▶ For those who have taken Group Theory, every finite cyclic Group is ”structurally
the same” as Zn
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Structural Equivalence

▶ But wait, what do we mean by ”structurally the same” and ”distinct”? Let’s
make this precise.

Isomorphism

An Isomorphism is a bijective (injective and surjective) transformation between 2
mathematical objects that preserves structure.

”Structure” can have different meanings depending on the context. It usually refers to
the operation and/or relation between the points defined on a set.

For instance, an Isomorphism between Vector Spaces is a bijective Linear
Transformation, since T (αv) = αT (v) and T (v + w) = T (v) + T (w) are properties
that preserve vector addition and scalar multiplication, the structure of a Vector Space.

▶ We can then say that two mathematical objects are ”the same” if there is an
isomorphism between them, and distinct if there is none.
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Invariants

Figure: The order of elements in a Group is an
invariant under the group: they won’t change
under isomorphism

Figure: Number of basis elements is an
invariant of a Vector Space

▶ Proving equivalence is an easy task, we just demonstrate an isomorphism between
the two objects.

▶ However, to prove two objects aren’t equivalent, we may have to look through
infinitely many transformations!

▶ Finding invariants helps remedy these problems.

Invariants

An Invariant of a mathematical object A is a property of A that is unchanged under
isomorphism.

In other words, if T is an isomorphism, then the property is true for both A and T (A).
This ensures objects are inequivalent if they do not share the property.
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Surfaces

Figure: A surface ”locally” looks like a subset
of the plane

Figure: Like the surface of the earth, a Surface
is locally planar

Surface

We will define a Surface as a space that ”locally” appears like a subset of the plane
(R2).

By locally, I mean that around every point, there is a small region that is isomorphic to
U ⊂ R2.

▶ We hope to find many examples and invariants for Surfaces.
▶ Our end goal will be to hopefully classify a ”nice enough” subset of surfaces.
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Some Examples

Figure: The Sphere is the simplest example of a
Surface

Figure: The Torus, 2-holed Torus, and generally,
n-holed Torus is another example of a surface

▶ To guide our intuitions in the right direction, let us first look at some examples.

▶ The simplest example is the sphere S2. This is the subset
{(x, y, z) ∈ R3|x2 + y2 + z2 = 1} of 3-D Space.

▶ We then have the Torus or Donut surface., the product S1 × S1 of two circles.
Even though your stomach may want to think otherwise, keep in mind it is only
the surface, the inside is hollow.

▶ We can generalize to a two holed, three holed, or n-holed Torus.
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Orientability and Non-Orientability

Figure: The Non-Orientable Mobius Strip. If
you take a trip, you can go all around the
surface. Spooky!

Figure: The Torus is orientable, the Mobius
Strip is not.

▶ Not all surfaces are as nice as the Sphere or Torus though!
▶ Some are one-sided or more precisely Non-Orientable

Orientable and Non-Orientable

We will say a Surface is non-orientable if you can take a normal vector on the surface
and invert it on that surface.

Roughly this means the Surface is one-sided, though the above definition is more
general and less ambiguous than ”one-sided”.
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Figure: Only one side allowed for a cheat sheet?
No problem!
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Klein Bottle

Figure: The Klein Bottle is a non-orientable
surface that cannot be placed in R3

Figure: If we take it apart, we can see it is
actually two Mobius Strips

▶ In addition to the Mobius Strip, there are even more exotic non-orientable Surfaces
▶ One such example is the Klein Bottle, a surface that cannot be placed in R3

without self intersection (Though can be placed in R4 without issues.)
▶ This is where the intrinsic view of Surfaces comes in handy

Intrinsic vs Extrinsic

There are two ways we can view Surfaces: as subsets of Rn for some n, or as spaces in
their own right.
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specific way. By ”gluing” the points together
so the arrows match up, we get the surface’s
usual appearance back. We call the rectangle
the surface’s ”fundamental polygon”
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More Intrinsic/Polygon Represented Surfaces

Figure: The Klein Bottle
represented by its ”fundamental
polygon”. Note the advantage of
the intrinsic viewpoint here: we
don’t have to think about self
intersection or higher
dimensional spaces.

Figure: The Torus represented by
its fundamental polygon

Figure: The Sphere represented
by its fundamental polygon.
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The Projective Plane

Figure: The Real Projective
Plane in ”Cross Cap” form: Note
the self intersection required to
view it in R3

Figure: The Fundamental
Polygon of RP 2

Figure: RP 2 can also be viewed
as a semisphere glued to a
Mobius Strip

▶ Another interesting example is the Projective Plane RP 2. It was originally an
object of study in Projective Geometry, but is also a Non-Orientable Surface.

▶ There are many ways of constructing this object: We can take the set of all lines
through the origin of R2, glue the boundary lines of a Mobius strip to a
semisphere, or glue diametrically opposite sides of a semisphere to each other.

▶ Like the Klein Bottle, it also cannot be placed in R3 without self intersection
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Figure: The Real Projective Plane can also
be viewed as gluing diametrically opposite
sides of a semisphere together

Figure: Taking it apart, we can
indeed see this is a valid
construction
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Isomorphism/Equivalence for Surfaces

▶ While we have many examples of Surfaces: we still lack a notion of equivalence:
i.e when are 2 Surfaces the same?

▶ Let’s fix this: we will define a notion of isomorphism between Surfaces: we will
call it a homeomorphism

Homeomorphism

A Homeomorphism f : Σ← Σ′ between two Surfaces Σ and Σ′ is a bijective
Continous function.

By Continous function, we mean any function that preserves ”intrinsic Topology”.
This refers to the way the points are connected to each other.

As such, we say two Surfaces are equivalent (or homeomorphic in this case) if the
intrinsic connection between their points are the same. We will explore this in a few
examples.
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Examples of Homeomorphism Between Surfaces

Figure: The classic example in Topology of
a Donut being Homeo to a Coffee Cup

Figure: They are said to be
equivalent to a Topologist :)
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Examples of Homeomorphisms between Surfaces

Figure: The Sphere S2 is homeomorphic to
an ellipsoid Y through the radial
projection function f : S2 → Y . Note that
f is bijective, and while it strecthes points
out, points that are connected in the
pre-image stay connected in the image.

Figure: This is a homeomorphism
f between a knotted Torus and
the standard Torus. Note that
while the points are disconnected
and reassembled in a different
way in the visual, points that are
connected in the pre-image stay
connected in the image.
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Some Non-Examples

Figure: This function f : R→ R from the
real line to the real line is not a
homeomorphism, as at x0 we disconnect
the real line where it was previously
connected.

Figure: This map from a Torus
to a cylinder is not a
homeomorphism, as we
disconnect part of the Torus from
itself where it was previously
connected in the pre-image
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Triangulation

Figure: Two Triangulations of
the Sphere!

Figure: Triangulation of the
Torus!

Figure: We want to avoid invalid
triangulations like this

We will now discuss a technique called ”Triangulation” that we will use to compute
invariants of our Surfaces

Triangulation

A triangulation of a surface Σ is a collection of triangles τ = {Ti}i∈I s.t

▶ 1.
⋃

i∈I Ti = Σ

▶ 2. Each triangle either meets at exactly one edge, one vertex, or nowhere.
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Invariants for Surfaces
We are now ready to start developing some Invariants for Surfaces!

Euler Characteristic

Given a Surface S, we define the Euler Characteristic χ(S) to be

χ(S) := V − E + F

where V,E, F are the amount of edges, vertices and faces in some triangulation of S.

Now again, we don’t know whether or not χ(S) is well defined or a topological
invariant yet. We will take well definedness up by faith. The idea is that we can move
between any triangulation of a given Surface without changing the Euler characteristic.

As for its topological invariance, note that a homeomorphism will carry a surface S to
a surface S′ without changing how the points are connected. Since

⋃
i∈I Ti = S, a

homeomorphism will carry the triangulation to S′ as well without changing the way the
Triangles are connected.
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Computing the Euler Characteristic for Some Surfaces

Figure: Computing the Euler
Characteristic for the Sphere and
Torus. Stretched Triangles or
Polygonal faces do not alter the Euler
Char.

Figure: If we triangulate the
Klein Bottle, we see that its
Euler Characteristic will turn out
to be χ(S) = 0
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Invariance of Orientability

Figure: Note that the points in the Torus vs The Klein Bottle are connected
similarly, but we ”invert” the gluing on the Klein Bottle.

▶ Notice that Orientability and Non-Orientability are also Topological invariants!

▶ We can see this in the Torus versus the Klein Bottle. While their fundamental
polygons are connected in almost the same way, the connection of their points is
reversed wrt the blue arrows.

▶ Since a rigorous proof of this is beyond the scope of this presentation, we will take
this up by faith for now.

▶ Note: we can now distinguish between all the Surfaces we have discussed so far:
they either differ by Euler Characteristic or by Orientability/Non-Orientability, as
shown in the chart above.
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Surgery and Constructing More Examples

Figure: Orientable Surgery on a Sphere

▶ Of course, when aiming to understand a mathematical object, the ability to
construct new examples from old ones is important.

▶ We will construct more Surfaces through a process called Surgery. This is gluing
Surfaces we already know together to create new ones! It is in general, an
important technique also used in other areas in Topology.

▶ We start by sewing on a cylinder onto a Sphere as follows: remove two disks from
the Sphere. Glue/identify the boundary of the cylinder with the two disks so that
the orientations match up.
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Note we can do this more than one times. This leads to the following definition:

Standard Orientable Surface of Genus n

We will define the standard orientable surface of genus n as the Surface obtained from
sewing n handles onto a sphere.

Note: if n = 0, this is the sphere. If n = 1, this is a Torus. If n = 2, this is a two-holed
Torus, and in general, we have something equivalent to an n holed Torus. Convince
yourself of this. Note these are all topologically distinct.
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Figure: Gluing a Mobius Strip onto a Sphere

▶ This technique seems fruitful so far, but ideally, we would like to be able to
construct non-orientable surfaces as well. Similarly, we can.

▶ We start by sewing a Mobius Strip onto a Sphere as follows: remove one disk
from the Sphere. Glue/identify the boundary of the Mobius Strip with the
boundary of the removed disk.

▶ You may object to this as the Mobius strip will have to self-intersect and create
what is known as a ”cross-cap” if we try to picture this in R3.

▶ However, this is no cause for concern. We are thinking of gluing abstractly, and
not with respect to some ambient space.
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Figure: Dyck’s Surface

Figure: Can also be realized as three Mobius Strips glued onto a
Square (equiv topologically to a Sphere)

▶ Again, we can do this as finitely many times as we want. This leads to the
following definition:

Standard Non-Orientable Surface of Genus n

We will define the standard Non-Orientable Surface of Genus n as the surface obtained
from sewing n Mobius Strips onto the Sphere.

If n = 1, this is a Projective Plane. If n = 2, we get a Klein Bottle. If n = 3, we get a
Surface called Dyck’s Surface. Note we don’t include the n = 0 case as this is a
Sphere which is orientable. All these Surfaces are once again distinct.
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Some Final Topological Notions

Compactness

We say a Surface S is compact if it has a finite Triangulation.

Surface with Boundary

We say S is a Surface with boundary if it is homeomorphic to a Surface with boundary
that has d disks removed.

Note that all of the Surfaces I have given as examples thus far have been Compact
Surfaces Without Boundary.

We prefer to work with Compact Surfaces as we can actually compute their Euler
Characteristic. This will be useful in our proof of the Classification Theorem.

We will also like to work with Surfaces without Boundary as the Surfaces with
boundary can be constructed from them.
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compact as there would be no
possible finite triangulation of it.
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with boundary: it is homeo to a
Sphere with 2 disks removed.

Figure: A Torus with 2 boundary
components
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connected.

Connectedness

We say a Surface is Connected if it is in one piece, and disconnected if it is not.

Spherelike

We say a surface is Spherelike if cutting along any closed curve will disconnect the
surface.

From here on out, ”Surface” will mean ”Compact Connected Surface without
Boundary” unless otherwise stated. This will simplify our Classification programme.
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Classification Theorem of Surfaces

We are finally ready to state the Classification Theorem of Surfaces!

Classification Theorem of Surfaces

Every Surface S is homeomorphic to one and exactly one of the Standard Surfaces.

In other words, every Surface is equivalent to a Sphere with g handles or g Mobius
Strips glued on.

This means that, up to homeomorphism, the standard surfaces we described by
construction form a complete list.
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2 Important Lemmas

To prove the classification Theorem, we must first prove two important Lemmas:

Lemma 1

If S is a compact connected Surface without boundary, then we have χ(S) ≤ 2

Lemma 2

If S is a compact connected Surface without boundary, then we have the following are
equivalent:

1. S is spherelike

2. χ(S) = 2

3. S is homeomorphic to the Sphere
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Graph Theory

Figure: A Graph.

Figure: A Tree.

To prove Lemma’s 1 and 2, we must introduce some terminology and prove some
results from Graph Theory.

Graph

A Graph is a connected set of Edges and Vertices between those Edges.

Connected means that every pair of Edges is connected by a path of Vertices.

Trees

Graphs may have loops between vertices. A graph that contains no loops is called a
tree.
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Graph Theory

Euler Char. of a Graph

We define the Euler Char of a Graph G to be
χ(G) = v − e

Lemma 3

Every tree always has one end vertex. (A vertex connected with only one edge)

Lemma 4

If T is a tree, χ(T ) = 1.
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Graph Theory

Proof of Lemma 3: Suppose for a contradiction a Tree didn’t have an end vertex.

Then at every vertex, it is possible to traverse a path across a graph such that each
edge is different then the last. Eventually we will visit all vertices, and revisit one,
giving us a loop. This is contradiction. ■

Proof of Lemma 4: We induct on e. The base case is e = 0. Then T is just a point, so
χ(T ) = v − e = 1− 0 = 1.

Now, assuming true for e− 1, we prove for e. By Lemma 1.1, choose an end vertex.
Then, removing this end vertex and the edge connected to it does not affect the Euler
char.

Removing this edge gives us a graph of e− 1 edges, which by the IH has Euler char 1.
Adding back the edge does not change the Euler char, so a graph with e edges must
have an Euler char of 1. ■
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Proof of Lemma 4: We induct on e. The base case is e = 0. Then T is just a point, so
χ(T ) = v − e = 1− 0 = 1.

Now, assuming true for e− 1, we prove for e. By Lemma 1.1, choose an end vertex.
Then, removing this end vertex and the edge connected to it does not affect the Euler
char.

Removing this edge gives us a graph of e− 1 edges, which by the IH has Euler char 1.
Adding back the edge does not change the Euler char, so a graph with e edges must
have an Euler char of 1. ■



Graph Theory

Figure: Turning a Graph L into a
Tree by removing finitely many
edges without disconnecting it.

Lemma 5

If L is a graph containing a loop, then χ(L) < 1.

Proof of Lemma 5: If L is a graph with a loop, then we can remove finitely many , say
g, edges, so that L becomes a tree.

This new graph, L′, is a tree and we will have χ(L) = χ(L′)− g = 1− g < 1, as
wanted ■
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Graph Theory
We will now define another important notion: The dual triangulation

The Dual Triangulation of a Surface

Take a Surface S and a finite triangulation Q of that Surface.

Within the interior of each Triangle, we place a vertex. This is called the ”Dual
Vertex”.

Then, between each pair of common edges between Triangles, place an edge between
their Dual Vertices. This is called the ”Dual Edge”

The collection of all Dual Edges and Vertices form the Dual Triangulation of S

Dual Tree

Any Tree in the Dual Triangulation is said to be a ”Dual Tree”.

The compliment K of a Dual Tree T is defined to be all the Vertices, Edges, and
Faces in Q that do not meet T .
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Graph Theory

Lemma 6

The vertices and edges of a compliment K of a Dual Tree T form a connected graph.

Proof: Note that K contains all the vertices in the Triangulation Q, so it suffices to
prove that any two of these vertices can be joined by a path of edges in K.

We induct on the number of edges. The base case is n = 0, in which case K and thus
Q are just a point and so connected.

Suppose now the result is true for n− 1. Given a dual tree with n edges, choose an
end dual vertex x by lemma 3, and let xy be the dual vertex connecting x to y, and X
and Y be the triangles containing x and y resp. Let a, b, c be the vertices of the
Triangle X
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Graph Theory

Figure: Triangles with the dual
vertices x and y resp.

We will let T1 be the dual Tree obtained by removing x and the edge xy from T .

Note that T1 has n− 1 edges, and so by the IH has a connected compliment K1.

But note, the compliment K of T is just the compliment K1 of T1 with the edge ab
removed.

But K is thus still connected, as any path from ab can be replaced by a path from cb
and then to ba, or the other way around.

Thus, K is connected, as wanted! ■
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Graph Theory

Lemma 7

We say a dual Tree is ”maximal” if it is not contained in any other dual Tree.

A maximal Dual Tree contains all dual vertices.

Proof: Contradiction, suppose that T is a maximal dual Tree that does not contain the
vertex x.

Let P be a path from x to some point in T , that does not intersect T at any other
points.

Let p be the point which P first intersects a triangle Y whose dual vertex is in T .
Note that p will for sure lie on the edge of Y .
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Figure: Path from Vertex x to
Vertex y.

Let Z be the triangle that shares this edge with Y . Note then that the dual vertex z of
Z will then not be in T , as otherwise p would not be the first.

But then this means we can extend T to the dual Tree T ′ by adding the edge yz and
the vertex z, a contradiction as we assumed T to be maximal. ■

Now, with these 2 Lemmas (Lemma 6 and 7) about Dual Tree’s proven, we can finally
proceed with the proofs of Lemma 1 and 2!
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Proof of Lemma 1

Recall:

Lemma 1

If S is a compact connected Surface without boundary, then we have χ(S) ≤ 2

Proof: Suppose S is a surface in the above sense, and let M be a triangulation of S.
Then we can also let T be a maximal Dual Tree for M , and C be its compliment.

This means T contains all the dual vertices, and so C has no faces as the compliment.
This means, by Lemma 6, C is a connected graph.

Note that there is a one to one correspondence between vertices of M and vertices of
C, as T will never pass through any vertices.

There is also a one to one correspondence between edges of M and edges of T and C,
as either an edge is crossed by an edge in T , or it is in C.
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Proof of Lemma 1
Lastly, there is a one to one correspondence between Faces of M and vertices in T , by
definition of what a dual vertex is and since T contains them all.

So, letting v1, e1 be the amount of vertices and edges in T , v2, e2 be the amount of
vertices, and edges in C, and v, f, e be the amount of vertices, edges and faces in M ,
we have

χ(S) = v − e+ f = v2 − e1 − e2 + v1

Rearranging, we get

χ(S) = v1 − e1 + v2 − e2 = χ(T ) + χ(C)

and by Lemma 4 and 5, we get

χ(S) = χ(T ) + χ(C) = 1 + χ(C) ≤ 1 + 1 = 2 as wanted! ■
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Proof of Lemma 2

Recall:

Lemma 2

If S is a compact connected Surface without boundary, then we have the following are
equivalent:

1. S is spherelike

2. χ(S) = 2

3. S is homeomorphic to the Sphere

We will prove this by proving the chain of implications:

(1)⇒ (2)⇒ (3)⇒ (1)



Proof of Lemma 2
(1)⇒ (2)

Let S be a Surface in the above sense, and assume S is spherelike but χ(S) ̸= 2 for a
contradiction.

Let M be a triangulation of S, and take a maximal dual tree T with compliment C.
Since T contains all dual vertices, C has no triangles.

Letting V,E, F, V1, E1, V2, E2 be the vertices, edges, and faces in M,T,C resp, we
have V = V2, F = V1, and E = E1 + E2. Then we have

χ(S) = V − E + F = V2 − E1 − E2 + V1 = χ(T ) + χ(C)

⇒ χ(C) = χ(S)− χ(T ) = χ(S)− 1 ̸= 1

by Lemma 4 and since χ(S) ̸= 2.
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So χ(C) ̸= 1, and so C is not a tree.

Thus C contains a loop on S, and since S is spherelike, this loop separates S into 2
disjoint pieces

Since we are seperating along a loop on a triangulation C, each piece contains at least
1 triangle, and therefore at least 1 Dual-Vertex.

By Lemma 6, T contains all the dual vertices in S, and as T is a Tree and therefore a
connected set of vertices and edges, we can take a path on T from one disjoint
component to another that does not meet C and so does not meet the loop. (because
T will never meet C by defn of C)

But then the loop does not disconnect S after all, a contradiction.

Thus, (1)⇒ (2) ■
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Proof of Lemma 2

(2)⇒ (3)
Assume that S is a Surface in the above sense, and that χ(S) = 2. Remember, we
want to show that S is homeo to a Sphere.

Letting T be a maximal dual tree, and C its compliment, we know from an analogous
argument to our proof of (1)⇒ (2) that

χ(C) = χ(S)− χ(T ) = 2− 1 = 1

Meaning C is a Tree.

Letting N(T ) be a small neighbohrhood about T , we claim that N(T ) is homeo to a
disk.

Since by Lemma 3, T will always have an end dual vertex, we can continously remove
edges without disconnecting it.
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Proof of Lemma 2

Figure: Growing the disk into
something homeo to NT (T )

We will end off with a singular vertex.

Now, consider a small neighbohrhood around this vertex. This is homeo to a disk.
Grow back out each edge and vertex, extending this small neighbohrhood to cover
each edge.

In the end, we will have something homeo to the original neighbohrhood, i.e a disk. By
an analogous argument, N(C) is also homeo to a disk. (as it is a tree)
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Now, for a point on S, we let t(x) and c(x) denote the distances from T and C resp to
x ( we can assume wlog that x is in a flat Triangle and so distances are well defined).

Locally, by definition of T and C, part of at least one will be in each Triangle.

Thus, locally we can expand x into N(T ) if t(x) ≤ c(x) and we will expand x into
N(C) if c(x) ≤ t(x). Note that since this is a local expanion of N(C) or N(T ), we
can ensure the Topology of both does not change

The resulting new N(T ) and N(C)’s are homeo to the originals.

Notably, points in N(T ) ∩N(C) are points on the boundary, i.e points such that
c(x) = t(x), and we now have N(T ) ∪N(C) = S by construction.

So S is 2 disks glued along their boundary, i.e a Sphere, as wanted ■
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Proof of Lemma 2

(3)⇒ (1)
Suppose S is homeo to a Sphere. We want to show S is spherelike.

Consider a curve C on S. Without loss of generality, we can assume C is a polygon of
Vertices and Edges in S.

Choose a point x on S that is not contained in C or any of the great circles containing
arcs on C and consider it the north pole.

Given any other point y that is not x or the south pole, we consider the arc xy. We
say xy has even parity if it intersects C an even number of times, and odd parity is
defined likewise.
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Figure: Our Curve C on S and
arc xy

Figure: Intersection like this
counts as 2 by convention.

With this in mind, we say that a point y on the Sphere has even if the arc xy has even
parity, and odd otherwise.

Along any path not containing C, the parity remains constant (even) so C divides S
into 2 distinct set of points: even and odd, as wanted. ■
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Proof

Figure: Cutting a Strip of Surface out of S

We begin by letting S be a Compact Connected Surface without Boundary. We want
to show S is homeo to a standard Surface.

Take a finite Triangulation of S and compute χ(S). By Lemma 1, χ(S) ≤ 2.

If χ(S) = 2, then by Lemma 2 S is homeo to a Sphere and we are done.

If χ(S) < 2, then by Lemma 2 S is not spherelike and so we can choose a curve C to
cut S by that does not disconnect it.

Consider a small strip of the Surface containing C. Either the strip is a Cylinder or a
Mobius Strip.
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Figure: The Curve C is orientation preserving in the left
case and orientation reversing in the right

We will call C orientation preserving if this small strip is a cylinder, and orientation
reversing otherwise.

We will now construct another Surface S1 from surgery again as follows.

Cut out the small strip of Surface containing C, and where the boundary components
are, glue disks on that are oriented. For a cylinder, each disk has an opposite
orientation to tell us which part of the cylinder to attach to which disk.

These will tell us how to sew them back up later.

Note that if C bounds a Mobius Strip, we only need to glue on one disk, otherwise we
need to glue on two (since C will bound a cylinder).
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Figure: Gluing a Disk equivalent to joining vertices of C to a point

We claim that

χ(S1) =

{
χ(S) + 2 if C is orientation preserving

χ(S) + 1 if C is orientation reversing

Since C is a curve, C will have n vertices and n edges on it, so χ(C) = n− n = 0.
Thus, removing C will not affect the Euler characteristic of S.

Now we break into cases. Consider the case where C is orientation preserving. Then
we glue 2 disks onto each boundary component on S left from C.

Note: we can consider gluing disks on as equivalent to joining the vertices of C to a
single point. This adds 2n edges, n+ 1 vertices, and n faces. Thus for each disk, we
have χ(D) = n+ 1− 2n+ n = n− n+ 1 = 1.
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So each disk added adds one to the Euler Char of S1 from S. Since in the orientation
preserving case, we add two disks, we get χ(S1) = χ(S) + 2, as desired.

Now for the orientation reversing case, we can argue analogously, except now we are
only adding on one disk, so χ(S1) = χ(S) + 1, as desired. ■

Note that this implies χ(S) < χ(S1) in both cases, and inductively that
χ(Sk) < χ(Sk+1)

Thus by this result, Since χ(S) < 2, we can consider a finite sequence of surgeries
from S ⇒ S1 ⇒ · · · ⇒ Sk s.t χ(S) < χ(S1) < · · · < χ(Sk) = 2

Note that by Lemma 2, Sk is homeo to a sphere.
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Figure: Shrinking a Disk D into
its interior.

We now have Sk, a sphere with some disks glued on.

We can ensure that each disk is disjoint by shrinking each one into the interior of its
triangulation on Sk. Note that this does not alter the Topology of Sk.

Now we have a collection of disjoint disks with orientation on Sk.
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We now preform desurgery on Sk as follows:

Desurgery

There are 3 main types of desurgery:

1. We have two disks with opposite orientations. Then we simply remove the disk
stretch each boundary up into a cylinder so that the orientation stays consistent,
this has the effect of attaching a cylinder to the sphere.

2. We have two disks with the same orientation. Then we remove each disk, and
push one boundary up and through the Surface into the other disk so that the
orientation stays consistent. This has the effect of attaching a Klein Bottle to the
Sphere.

3. We have 1 disk left over. We simply glue a Mobius strip onto the boundary.
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Note that, through performing all these surgeries in order, we obtain a Surface S′

homeo to our original S, since we simply glued back all the points so that they are
connected in the same way as S.

We now consider 2 cases: The first case is if S′ is orientable.

Then S′ cannot have any Mobius Strips or Klein Bottles in it, so only desurgeries of
type 1 can occur. This means that S ∼= S′ is a Sphere with n handles sewn on.

The genus of S is the number of handles added during desurgery, and since each handle
subtracts 2 from the Euler char (or adds 2 when taken away in surgery), we have

g = 1− χ(S)

2
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Proof

Figure: Transforming a Type 1 Desurgery into a Type 2 Desurgery

Case 2: S′ is nonorientable. Then all types of desurgery can occur.

Note that a type 2 desurgery is equivalent to two type 3 desurgeries, as a Klein Bottle
is a sphere with two Mobius Strips glued on.

Since S′ ∼= S is non-orientable, there must be a non-type 1 desurgery performed on it,
and so it has a Mobius Strip in it.

We convert each Type 1 surgery to a Type 2 as follows: we can transport one of the
disks around the Surface and around a Mobius Strip in the Surface without changing
S’s Topology.

This will reverse the orientation of the disk, which will change the Type 1 DeSurgery
to a Type 2 DeSurgery.
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This means that S′ is a Sphere with a bunch of type 3 desurgeries: in other words: a
Sphere with n Mobius Strips glued on, and thus a Standard Non-Orientable Surface of
Genus g

Again, since each orientation reversing curve removed in surgery adds one to the Euler
Char, or equivalently, each Mobius Strip glued on takes away one from the Euler Char,
we have the genus can be computed by

g = 2− χ(S)

This completes the proof of the classification theorem! ■
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Important Corollary

Since every single Standard Surface is topologically equivalent, and have the Euler
Characteristics g = 1− χ(S)

2 or g = 2− χ(S) respectively, the Classification Theorem
gives us the following way to Identify a Surface

Corollary

If S is a compact Surface without boundary, the following properties completely
determine S up to homeomorphism:

1. The Euler Characteristic of S

2. Whether S is orientable

This is fantastic, as if we ever come across a Surface in other mathematical work, we
know how to identify it as one on the list!
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Figure: A Type Two DeSurgery

▶ In this presentation, we have used and developed many techniques to classify an
important set of mathematical objects

▶ Not only have we accomplished this, but believe it or not, we have used
techniques that are also commonly used to classify a wider class of objects known
as Manifolds

▶ For a taste of this, see Aleph 0’s video on the Poincare Conjecture.

▶ However, we will end off here. I hope you appreciated the geometric wonder of
this effort to classify the Surfaces up to homeomorphism!
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Suggested Reading

▶ Textbooks:

▶ Topological Manifolds by John Lee (Will walk you through all the rigorous
Topology you need to know for further study of differential Topology, motivated
heavily by Manifolds/Surfaces and very geometric.

▶ Topology by Munkres (Another option for an introduction to Topology, a different
approach to the subject then Lee)

▶ Other Books:

▶ Euler’s Gem by David Richeson (A fantastic introduction to the history and
motivation behind Topology at a beginner level)

▶ The Princeton Companion to Mathematics (A fantastic encyclopedia of
Mathematics that has info on Topology and many other amazing fields of
mathematics)

▶ Jeffery Weeks ”The Shape of Space” (An awesome book that covers not only
Classification of Surfaces but also 3-Manifolds and Geometry of Surfaces!)
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