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The Plan

Figure: Seifert Surfaces of various Knots
Figure: Topological Surfaces

Today, we will be building up to a useful invariant in knot theory, the
minimal genus of a Knot K

Along the way, we will cover some beautiful mathematics
such as knot theory, Euler’s characteristic, and some basic topology of
surfaces!

I hope you are as excited for it as I am :)
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What is Knot Theory?

Figure: The Trefoil Knot in R3

Figure: To a Topologist, the donut and
coffee mug are equivalent under
continous mapping/deformation

Definition

A Knot K is a projection/image of S1 (a unit circle) embedded (placed in)
R3 (3-D Space).

Knot Theory is the study of Knots.

It is a sub-field of Topology, which is
a field of mathematics where the properties
of objects/spaces preserved under continuous mappings are studied.
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When are 2 Knots the Same?

We consider knots equivalent ”up to ambient isotopy”:

Figure: 2 ambient isotopic knots

Figure: The Trefoil Knot and the Unknot
(Or Trivial Knot), known not to be
equivalent.

Definition

We say 2 knots K1 and K2 are equivalent (K1
∼= K2) if there exists an

ambient isotopy (continous deformation over time) H : R3 × [0, 1] → R3

and a continuous bijection (homeomorphism) H1 : R3 → R3 s.t
H1 = H(K1, 1) = K2. (We can think of [0, 1] representing time, and us
continously deforming K1 into K2 through 3-D space over time).
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Knot Diagrams

In practice, we typically view a projection of the knot equipped with
the information about the knot’s crossings

Figure: Knot diagrams of various Knots

Definition

A Knot Diagram for a Knot K is a projection ϕ : K ⊂ R3 → R2 equipped
with information regarding the Knots crossings.
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Orientation and Knot Sum

Figure: We pick an orientation along both knots first.

We will quickly (albeit informally) define the sum of 2 Knots: K1#K2

(This will be useful for later).

To take the sum along 2 knots, we will first pick an orientation (pick
a direction to move along the knot) along both.

Next, we ”glue” (connect them along a segment) such that no new
crossings are added.

Definition

The sum of Knots K1 and K2, K1#K2, is the gluing of K1,K2 along a
section of both such that no new crossings are added.
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Orientation and Knot Sum

Figure: A valid Knot Sum

Figure: Not a valid Knot Sum (Pun
intended)

If the orientation of the 2 knots are the same, then we get 1 possible knot
from the composition. If the orientation is different between the 2, we
could potentially get a different knot (though there is a case where the
sums are the same).
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Prime Knots

Figure: Every Knot is the Sum of itself
with the Unknot

Figure: This Knot is composite: it is the
sum of 2 trefoils

Definition

We say a Knot K is prime if it is not the sum of any 2 nontrivial Knots K1

and K2. Likewise, we say a Knot K is a composite Knot if K ∼= K1#K2,
where K1 and K2 are nontrivial

You can think of these as analogous to the prime and composite
integers!

What if the Unknot is composite though? We will prove this isnt the
case with surfaces and find a way to identify some prime knots as well!
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Knot Invariants

Figure: The Trefoil is Tricolorable while
the Unknot is not, so they are not
equivalent.

Figure: The Alexander Polynomial,
another popular Knot Invariant

A main goal in Knot Theory is telling knots apart: i.e which knots are
equivalent and which knots aren’t

It is easy enough to tell if 2 knots are equivalent (show that they are
ambient isotopic to each other)
However, how do we show they aren’t?
Developing Knot Invariants is how this is done. A Knot Invariant is a
property that is shared between equivalent knots. (I.e properties that
are preserved under Isotopy of Knots)
Some examples are Tricolorability, Knot Polynomials, and what we
will be developing today, Genus of a Knot
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Euler’s Identity

Figure: V - E + F = 2 for all regular
polyhedra

Figure: Leonhard Euler

Euler’s Identity is a beautiful identity that relates the Vertices, Faces,
and Edges of a Regular Polyhedron

It states that V - E + F = 2 for all Regular Polyhedra

It turns out that Euler’s Formula not only holds for regular Polyhedra,
but a wider class of objects

We will see this formula also generalize when we cover topological
surfaces
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Topological Surfaces

Definition

A topological space Σ is a topological surface if

For every point p ∈ Σ, there is an open neighbohrhood U of p and a
homeomorphism (bicontinous bijection) ϕ from U to an open set of
R2. (Σ must also be 2nd countable and Hausdorff, however we will
not go into such technical terms)

You are already somewhat familiar with these as you live on one! :D

Figure: The surface of the earth is a
topological surface: flat locally, spherical
globally!

Figure: Every point in the surface must
have a neighbohrhood that resembles
the plane (look flat locally).

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 14 / 59



Topological Surfaces

Definition

A topological space Σ is a topological surface if

For every point p ∈ Σ, there is an open neighbohrhood U of p and a
homeomorphism (bicontinous bijection) ϕ from U to an open set of
R2. (Σ must also be 2nd countable and Hausdorff, however we will
not go into such technical terms)

You are already somewhat familiar with these as you live on one! :D

Figure: The surface of the earth is a
topological surface: flat locally, spherical
globally!

Figure: Every point in the surface must
have a neighbohrhood that resembles
the plane (look flat locally).

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 14 / 59



Topological Surfaces

Definition

A topological space Σ is a topological surface if

For every point p ∈ Σ, there is an open neighbohrhood U of p and a
homeomorphism (bicontinous bijection) ϕ from U to an open set of
R2. (Σ must also be 2nd countable and Hausdorff, however we will
not go into such technical terms)

You are already somewhat familiar with these as you live on one! :D

Figure: The surface of the earth is a
topological surface: flat locally, spherical
globally!

Figure: Every point in the surface must
have a neighbohrhood that resembles
the plane (look flat locally).

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 14 / 59



Topological Surfaces

Definition

A topological space Σ is a topological surface if

For every point p ∈ Σ, there is an open neighbohrhood U of p and a
homeomorphism (bicontinous bijection) ϕ from U to an open set of
R2. (Σ must also be 2nd countable and Hausdorff, however we will
not go into such technical terms)

You are already somewhat familiar with these as you live on one! :D

Figure: The surface of the earth is a
topological surface: flat locally, spherical
globally!

Figure: Every point in the surface must
have a neighbohrhood that resembles
the plane (look flat locally).

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 14 / 59



Some Examples

The Sphere (surface of a ball) is the most common example, we can
see that if we were tiny enough and were small enough, things would
look flat!

Figure: The Sphere is the most common example of a topological surface

The Torus, or surface of a donut, is another interesting example

Figure: The Torus is another important
example of a surface

Figure: We can extend this concept to a
2,3, or g-holed torus
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Homeomorphisms

Homeomorphisms

We consider 2 surfaces Σ1 and Σ2 Homeomorphic (Σ1
∼= Σ2) if there

exists a bicontinous bijection ϕ : Σ1 → Σ2.

Note: This is not the same as isotopy equivalence: we are not
considering them up to continous deformations through space: just
up to a continuous transformation.

Intuitively, we can think of this as being able to take the surface apart
and glue it back together so that all its parts are connected in the
same way

This means that certain surfaces are homeomorphism equivalent but
not isotopy equivalent like our knots.
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Homeomorphism Equivalence

Figure: The Torus and knotted torus are
homeomorphic but not isotopy
equivalent: there is a continous mapping
between the 2 but no continous
deformation

Figure: We can intuitively think that we
can cut one up and paste it into the
other one in a way that preserves the
”topology” or connectedness of our
surface

Homeomorphisms preserve many of the properties we like in Topology

For those who have taken a linear algebra or abstract algebra course,
you can think of them as the isomorphisms of topology
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Triangulation

Now you’re probably wondering: how do we generalize Euler’s Identity
to surfaces: they seem to have no clear faces, vertices, or edges

Here’s where triangulations come in: we divide a surface into
triangular faces so that we may compute their ”Euler Characteristic”

Definition

A triangulation of a surface Σ is a collection of triangles τ = {Ti}i∈I s.t
1.

⋃
i∈I Ti = Σ

2. Each triangle either meets at exactly 1 edge, 1 vertex, or nowhere.

Figure: We want to avoid invalid triangulations like this
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Triangulation

We won’t prove this here, but the Euler Characteristic
χ(τ) = V − E + F of a given triangulation is preserved under
homeomorphisms.

Additionally, it is independent of the given choice of triangulation for
a given surface (this is also a little out of our scope to prove currently)

Thus, it finally makes sense to give the following definition of Euler
Characteristic of a surface below

Definition

The euler characteristic of a surface (χ(Σ)) is

χ(Σ) = χ(τ)

for any (finite) triangulation τ of Σ
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Triangulations and Euler Characteristic: Some Examples

Figure: This triangulation of the sphere
shows us that the Euler characteristic of
the sphere is V - E + F = 2 after
counting up all the vertices, edges and
faces. Note this is the same for anything
homeomorphic to the sphere and for any
triangulation of the sphere

Figure: If we take a triangulation of the
torus, we see that it (and anything
homeomorphic to it) has euler
characteristic 0. Note: the faces aren’t
exactly triangles but this division of the
surface still works for correctly
computing the Euler Characteristic
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Some Other Notions: Compactness

We say Topological space is compact if every collection of open sets
that contains the space can be made finite and still contain the space.
Intuitively, you can think that the space is always finitely
”approximated”

However, there is an equivalence to this that is well known/proven for
surfaces that we will use as our definition instead:

Definition

We say a surface Σ is compact if it can be triangulated with a finite
triangulation τ .

We will like to deal with compact surfaces as supposed to
non-compact one’s, as we can compute their Euler characteristic for
instance.
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Compactness: Some Examples

Figure: The Sphere is compact: it has a
finite triangulation

Figure: The plane is not compact: there
exists no finite triangulation of the plane
(note that the plane is still a surface)
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Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.

Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).

More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.

A fundamental example is the mobius strip

Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip
Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

Figure: The mobius strip is
non-orientable: there is no way to
differentiate between n and −n

Figure: Ants walking on a mobius strip:
we can see there is no ”side” seperating
them

In our investigation of surfaces, we will also want to distinguish
between orientable and nonorientable surfaces.
Intuitively, you can think of orientable surfaces having distinct ”sides”
(i.e like how the sphere has an inside and outside).
More formally, we can define these sides in terms of a positive and
negative normal n and −n. On a non-orientable surface, you can slide
n around the surface so that it becomes −n.
A fundamental example is the mobius strip
Alex Teeter (UTSC) Seifert Surfaces and Knot Genus 2022 23 / 59



Some other notions: Orientability

In fact, every non-orientable surface ”contains” a mobius strip!

It turns out as well: orientability (and/or non orientability) is
preserved under homeomorphisms. That is, if 2 surfaces Σ1 and Σ2

are homeomorphic, then either they will both be orientable or
non-orientable!

We will see a wierder example of a non-orientable surface: The Klein
Bottle (A surface that only truly exists in R4: it will always intersect
itself in R3!

These surfaces are interesting in their own right, however, for our
purposes, we will prefer our surfaces to be orientable.
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Some other notions: Orientability

Figure: The Klein bottle: another
example of a non-orientable surface

Figure: We can see that the Klein Bottle
contains within it a mobius strip
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Some other notions: Surfaces with boundary

Figure: A Torus with 2 boundary
components

Figure: Surfaces without (left) and with
(right) boundaries

We can think of a surface with boundary as a surface homeomorphic
to a surface without boundary with d disks removed.

We can convert these to something homeomorphic to a surface
without boundary by gluing back d disks

Something to note: adding in d boundary components decreasing the
Euler Characteristic by d (it removes a face homeomorphic to a
triangle, but doing so does not remove any edges or vertices)

We will be investigating such surfaces when we get back to knots.
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Classification Theorem for Compact Orientable Surfaces

Now we are finally ready to discuss a big theorem about surfaces that will
be useful to our endeavours:

Classification Theorem for Compact Orientable Surfaces

Every compact orientable surface without boundary Σ is homeomorphic to
a sphere S with g handles attached. We call the amount of handles the
genus of the surface. If a surface has boundary, then we say the genus of
that surface is the genus of the surface without boundary we obtain from
capping it off with disks

What exactly do we mean when we say ”handles attached”

It means that every compact orientable surface is homeomorphic to
one created through this process:

Take a sphere S , and remove 2 disks d from S . Then attach
cylindrical handle H to S by gluing along the boundary of the disks,
as will be shown
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Classification Theorem for Compact Orientable Surfaces

Figure: Creating a torus from a sphere
through a handle decomposition

Figure: The classification theorem says
that every compact orientable surface
can be classified (up to
homeomorphism) this way
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Classification Theorem for Compact Orientable Surfaces

Corollary

For a given compact orientable surface (without boundary) Σ,
χ(Σ) = 2− 2g , where g is the genus of Σ

We prove this by induction on g .

Base Case: g = 0

If g = 0, then Σ is identically a sphere. We already know for the sphere
(and any surface Σ homeomorphic to it) that χ(Σ) = 2. So we have
χ(Σ) = 2− 2(0) = 2. This proves the base case.

Inductive Step: Suppose for a surface Σ with g handles, we have
χ(Σ) = 2− 2g

Wtp: If we glue on another handle, giving us a surface Σ′ with g + 1
handles, we have χ(Σ′) = 2− 2(g + 1) = 2− 2g − 2.
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Classification Theorem for Compact Orientable Surfaces

Suppose we attach another handle H to a surface Σ with g handles,
creating Σ′

We would have to remove 2 disks to do this.
Each disk is homeomorphic to a triangle in the Σ triangulation :
removes a face and no edges or vertices.
Thus, Euler Characteristic goes down by 2.

A handle H is just a cylinder: a sphere with 2 boundary components
We thus have χ(H) = 2− d = 0, and Σ′ is Σ with H attached, so

χ(Σ′) = χ(Σ) + χ(H)− 2

Which by the inductive hypothesis

= 2− 2g + 0− 2 = 2− 2g − 2

as wanted! This completes the proof! ■
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Classification Theorem for Compact Orientable Surfaces

This fact is fantastic! It means that every compact orientable surface
is determined by its:

1. Euler Characteristic

2. Amount of boundary components

Figure: A compact orientable surface bounded by the figure 8 knot. If we
triangulate it and compute its Euler Characteristic, we would see that it is −1.
Using our identity χ(Σ) = 2− 2g , and capping off the 1 boundary component
with a disk (adding 1 to −1, we get that this surface has genus 1: i.e it is
homeomorphic to a torus with 1 boundary component removed.
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Seifert Surfaces

Figure: Trying our approach on the
Trefoil gives us a band with 3
half-twists, which is not orientable :(

Figure: It would be nice if we could
associate an orientable surface to each
Knot: potential invariant?

As shown in the previous slide: having an orientable surface bounded
by a Knot K allows us to associate a genus g to it.

It would be nice if we could do this for any Knot K ....

Naive Approach: Just fill in the region bounded by the Knot K

Issue: Sometimes we can end up with a non-orientable surface using
this method.
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Seiferts Algorithm

Seifert’s algorithm comes to the rescue!

Theorem

For Every Knot K , there exists an orientable compact Surface S such that
K = ∂S (K is the boundary of S).

We can construct such a surface for every Knot using Seifert’s Algorithm:

1. Pick an orientation to travel around the knot’s diagram (like we
did for our Knot Sum)

Figure: We begin the algorithm by picking an orientation to travel around the
Knot.
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Seiferts Algorithm

Figure: We smooth out each crossing

2.Travel around the knot in our chosen orientation.

3. Each time we come across a crossing, assign points Ain and Aout

to the out and in parts of the over crossing, and Bin and Bout likewise
to the undercrossing.

4. Smooth out the crossing so that Bin is attached to Aout and Ain is
attached to Bout
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Seiferts Algorithm

Figure: Performing this algorithm on the
trefoil, we would get disks: these are our
seifert circles

Figure: We finish off by attaching each
crossing with bands with a half-twist

5. Performing this algorithm, we produce disks (some disks are on top
of each other, this is fine). We call these disks the seifert circles.

6. In each place that we smoothed out a crossing, attach the disks
with a half twisted band

7. We have obtained our Seifert Surface for K ! (We have a compact
orientable surface bounded by K !)
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Seiferts Algorithm

Figure: Adding the half-twisted bands to the disks preserves orientation.

It is easy to see that this surface is compact (as it is just a collection
of finitely triangulable components).

How do we know it is orientable though?

Take the induced orientation from our Knot K . (I.e consider a
clockwise orientation around a disk to have one normal vector
arrangement, and the counterclockwise one to have the other).

Since the bands we attach have half twists, and we know by
construction that the disks they connect will have opposite
orientation from one another, then the half twist allows a consistent
orientation across the whole surface.
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More Examples

Figure: The Seifert Surface we
constructed for the trefoil, before
isotoping it

Figure: The Seifert Surface we
constructed for the trefoil, after
isotoping it

Figure: Another construction of a Seifert
Surface: This time for a figure eight knot

Figure: Seifert surfaces of various Knots
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Minimal Genus

So we may be tempted now to define the genus of a Knot K as the
genus of the Seifert Surface it bounds.

Problem?

Seiferts Algorithm is not guranteed to give the only compact
orientable surface a Knot could bound. A Knot can bound multiple
compact orientable surfaces of different genus.

So instead, we take the following definition

Definition

We define the genus of a Knot K , g(k) as

g(K ) := min{g(S)}

where S is any Seifert Surface the Knot bounds. We will not prove it, but
this is indeed a Knot Invariant.
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Computing the Minimal Genus

Figure: Alternating projection of the
figure eight knot

Figure: Lots of Knots have alternating
projections!

This is well defined...but now looks difficult to compute.....

The following theorem comes to our rescue!

Theorem

Preforming Seifert’s Algorithm on an alternating projection of a Knot K
will give the surface of minimal genus for K

An Alternating projection of a Knot is a projection where the
crossings alternate between over and under.

It turns out a wide class of knots have this property!
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Computing the Minimal Genus

We first consider our construction of the surface of the Trefoil Knot.

We used 2 disks for its construction. Each disk has Euler
characteristic 1.

We also attached 3 bands across the boundaries of these disks. In
doing so each time, we added 1 Face and 2 Edges, and no vertices to
our triangulation. By the definition χ(S) = V − E + F , we decrease
the Euler characteristic by 1 for each band.

So the Euler characteristic of the surface must be χ(S) = 2− 3 = −1.

We know this surface by construction has 1 boundary component
(The Trefoil) so gluing on a disk to get a surface without boundary
S ′, we have χ(S ′) = −1 + 1 = 0
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Computing the Minimal Genus

Using our formula for genus now, we now have

2− 2g(S) = 2− 2g(S ′) = χ(S ′) = 0

So we have the equality 2g(S) = 2 and so g(S) = 1! So the Trefoil
Seifert Surface has genus 1! (It must be homeomorphic to a Torus
with a disk removed, though it may not look like it)

In fact:

Theorem

For any Seifert Surface S constructed using b bands and d disks in Seiferts
Algorithm, we have

g(S) =
1− d + b

2
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Using our Invariant

We preformed Seifert’s algorithm on the alternating projections of the
Trefoil Knot and Figure Eight Knot, so we know that it gave their
minimal genus Seifert Surface.

So we know that the minimal genus for the Trefoil Knot is 1!

The construction of the Seifert Surface for the Figure Eight Knot uses
3 disks and 4 bands, so its min genus is

g(K ) = g(S) =
1− 3 + 4

2
= 1

So the figure eight knot has minimal genus 1 (Warning: this does not
mean the figure eight knot is the Trefoil!)

We also have the following theorem:

Theorem

A Knot K is the Unknot if and only if its minimal genus is 0 (i.e it bounds
a disk)
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Using our Invariant

Figure: The 62 Knot

Figure: Its corresponding Surface with
Genus 2

So we can conclude the Trefoil and the Figure Eight Knot are not the
Unknot!

The Knot above has a minimal Genus Surface of 2, so it must be
distinct from the Trefoil Figure Eight Knot, and the Unknot!

Hope this gives you a good idea of how we can use our Invariant to
distinguish between Knots!
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An Important Theorem

Now we will prove the following important Theorem

Theorem

For any 2 Knots K1,K2, g(K1#K2) = g(K1) + g(K2)

Proof:

Part 1: g(K1#K2) ≤ g(K1) + g(K2)

Consider 2 minimal genus Seifert Surfaces S1 and S2 for K1 and K2

respectively

We can simply join the 2 surfaces through a single band, creating a
Seifert Surface for K1#K2 whose genus is the sum of g(K1) and
g(K2). So either the minimal genus of K1#K2 is g(K1) + g(K2), or
there is a surface of smaller genus. We will show there isn’t.
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An Important Theorem

Figure: Connecting Minimal Seifert Surfaces for K1 and K2 to create a Seifert
Surface for K1#K2

Part 2: g(K1) + g(K2) ≤ g(K1#K2)

We consider a minimal genus Seifert Surface S for K1#K2. Since
K1#K2 is a composite Knot, we can consider a twice punctured
Sphere F that seperates K1#K2, the boundary of S , into 2 arcs α1

and α2 at the punctured points given by the Knot Sum definition.
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An Important Theorem

Figure: We seperate the K1 and K2 part
of our surface with F

Figure: This seperates the boundary of
our surface into 2 arcs: α1 and α2, with
β between them

We consider the intersection arc β that runs from the intersection
points of S and F (Where the punctures are) and note that
β ∪ α1 = K1 and β ∪ α2 = K2.

So in R3\F , there is the K2 portion of the surface, and inside F there
is the K1 portion.

We want to construct a surface such that F cleanly divides it into K1

and K2 along β (i.e there are no other intersections)
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An Important Theorem

We can isotope (deform through space) S and F to remove any single
point or disk intersections. (This is called putting them in general
position)

Figure: Isotoping to remove non curve
intersections.

Figure: Putting S and F in general
position

So the only elements of S ∩ F should consist of the curve β and
Loops. (Note: β is the only curve since ∂S only intersects F at the 2
points in the Knot Sum)
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An Important Theorem

Figure: S ∩ K consists of β and loops

Figure: Intersection loops and β on S
and F

To remove the intersection loops, we will ”perform surgery” on S .
(Surgery techniques like these are common in Topology and
Manifolds)!

Consider an ”innermost” intersection loop C in S ∩ K . We cut our
surface along C .

We then attach disks D1 and D2 along C to both parts of the surface.
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An Important Theorem

Figure: Surgery on S along C

Figure: Attaching Disks to the 2 parts
along C

Note: this process did not include any part of the boundary of S , so
the New S that results is still a Seifert Surface for K1#K2

Since we added 2 disks D1 and D2, and χ(D) = 1 (for a disk), if S\C
is connected, then we have a contradiction as we increased the Euler
Characteristic by 2 and thus lowered the genus, so S wouldn’t be
minimal genus.

So S\C must be disconnected, so we simply disregard the part that
K1#K2 doesn’t bound .
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An Important Theorem

Figure: Yay! S divides cleanly through F into K1 and K2!!

Throwing away this part will leave the genus the same, as we are
keeping D1 but throwing away D2.

Repeating this process finitely many times until all Loops are
removed, we obtain a Minimal Seifert Surface S ′ for K1#K2 that is
divided into a K1 Seifert Surface and K2 Seifert Surface by β and has
no other intersections.

These are not necessarily minimal, so g(K1) + g(K2) ≤ g(K1#K2) as
wanted! ■
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Other Results

Theorem

The Unknot is not the Sum of 2 non-trivial Knots

Assume that the Unknot, O, is equivalent to K1#K2, where K1 and
K2 are not the Unknot

From our result, we have

g(O) = g(K1#K2) = g(K1) + g(K2) ̸= 0

A contradiction, so the unknot is not the sum of any 2 nontrivial knots! ■

Theorem

If g(K ) = 1, then K is a prime knot

Assume K = K1#K2. (Where K1 and K2 are nontrivial) But then

g(K ) = g(K1#K2) = g(K1) + g(K2) = 1
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Other Results

Figure: Trefoil Knot has Genus one as
we have shown, so it must be prime

Figure: Same with the figure eight!

which implies K1
∼= O or K2

∼= O, a contradiction! So K is prime! ■

Note: since we found that the Trefoil and Figure Eight Knot have
Genus 1, they are both prime :D

Theorem

Every Knot is a finite sum of prime Knots

Follows from g(K1#K2) = g(K1) + g(K2) and genus 1 knots guaranteed
prime.
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Conclusion

Figure: Our Friends: The compact
orientable surfaces :)

Figure: Hopefully this encouraged you to
do further reading on Knot theory and
Topology! This is ”Knot” the end ;)

Not only have we found a useful invariant for differentiating between
Knots, but we have also managed to use it to prove important
theorems about Knot Theory and Prime Knots!

Hope this helped demonstrate the power of surface
topology/classification of surfaces theorem and its beautiful
connection to Knot Theory!

Hope you enjoyed the presentation!
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Further Reading

The Knot Book - Collin Adams (Very nice introduction to Knot
Theory, no prerequisites needed but covers some very deep ideas still,
fun and inspiring read)

Knot Theory - Math at Andrews Lecture Series: (A fantastic lecture
series, doesn’t assume much background other than some basic Linear
Algebra and a tiny bit of group theory, comes with exercises)

Euler’s Gem - David S. Richeson (Fantastic book that goes over the
history and concepts of Topology: assumes no prior background and
is a very fun read)

An Introduction to Knot Theory - W.B.R Lickorish (Another great
text on Knot Theory, a lot more heavy than Colins Book, some
algebraic Topology background is assumed)

Topology - Munkres (The golden standard for an introductory course
to topology, no background is technically needed but is good to know
some analysis, covers classification of surfaces in much more detail)
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