Partial orders and application to the semantics of computer programs

Albert Lai

July 14, 2021

The Recursive Program Question

In a typical functional programming language:

```
g : Integer -> Integer
g(n) = if n=0 then 0 else g(n-2)
```

Expect: g(n) is defined for even $n \ge 0$, undefined elsewhere, this is fine.

Want: A mathematical model that gives such predictions.

Solution Ingredient: Permitting Undefinedness

Add \perp ("bottom") to codmain to stand for "no answer":

$$g\colon \mathbb{Z}\to\mathbb{Z}\cup\{\bot\}$$

E.g., expect $g(3) = \bot$.

Not done today: Also add \perp to domains, more uniform (Integer is always $\mathbb{Z} \cup \{\perp\}$), covers "non-strict" language such as Haskell, but more distracting when today I don't need it.

Fine point: Intuitively non-termination, but want to abstract away from computational steps. So "no answer", "undefined" are better.

Solution Ingredient: Successive Approximations

Construct sequence of functions g_0, g_1, g_2, \ldots

 $g_0(n) = \bot$ (for all *n*) $g_{i+1}(n) = \text{if } n = 0 \text{ then } 0 \text{ else } g_i(n-2)$

<i>n</i> :	-1	0	1	2	3	4	5
$g_3(n)$:	\perp	0	\perp	0	\bot	0	\perp
$g_2(n)$:	\perp	0	\perp	0	\bot	\bot	\bot
$g_1(n)$:	\perp	0	\perp	\bot	\bot	\bot	\bot
$g_0(n)$:	\perp	\bot	\perp	\bot	\bot	\bot	\perp

Idea: g_i approximates the program, as much information (answer) as possible under a quota of recursion depth *i*.

⊥ can also stand for "no information, I don't know [for now]".

Solution Ingredient: Take Limit

$$g_i(n) = \begin{cases} 0 & \text{if } 0 \le n < 2i \text{ and } n \text{ is even} \\ \bot & \text{o/w} \end{cases}$$

Sequence of increasing definedness. Take limit. Idea: What if unlimited quota of recursion depth.

Define g to be the limit.

$$g(n) = \begin{cases} 0 & \text{if } 0 \le n \text{ and } n \text{ is even} \\ \bot & \text{o/w} \end{cases}$$

Will have to define "limit".

Solution Recipe

In general: For a piece of recursive function code

```
foo : X -> Y
foo(x) = ... foo(x') ...
```

Model as

$$foo: X \to Y \cup \{\bot\}$$
 or $X \cup \{\bot\} \to Y \cup \{\bot\}$

Construct sequence of functions

$$foo_0(x) = \bot$$

 $foo_{i+1}(x) = \dots foo_i(x') \dots$

Then use the limit for *foo*.

The rest of the talk is about what is "limit" and why this always works.

Partial Order

Idea: Relax from total order, allow both $\neg(x \sqsubseteq y)$ and $\neg(y \sqsubseteq x)$ —"*x* and *y* are incomparable".

Axioms:

- reflexive: $x \sqsubseteq x$
- transitive: if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
- antisymmetric: if $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y

Familiar example: \subseteq over a powerset, or really any family of sets.

Information Order

Definition: Information order over $\mathbb{Z} \cup \{\bot\}$ is the smallest relation \sqsubseteq such that: $\bot \sqsubseteq \bot$; and for all $k \in \mathbb{Z}$, $\bot \sqsubseteq k$ and $k \sqsubseteq k$.

E.g., $0 \not\equiv 42$ and $42 \not\equiv 0$.

Idea: $x \sqsubseteq y$ means y has the same or more information (answer) than x.

Boring but there is a reason, and there are ways to build interesting orders.

People write \mathbb{Z}_{\bot} for $\mathbb{Z} \cup \{\bot\}$ when using this information order.

Hasse Diagram

Shows a partial order in a diagram.

If $x \sqsubseteq y$, $x \ne y$, and nothing in between, draw *y* higher than *x*, connect with line segment. Horizontal position unconstrained apart from aesthetics.

Pointwise Function Order

Let *X* be a set (no required structure).

Let \sqsubseteq be a partial order over *D*. Can extend pointwise to function space D^X but I write $X \rightarrow D$:

 $f \sqsubseteq g \text{ iff } \forall x \in X \cdot f(x) \sqsubseteq g(x)$

Examples: $g_0 \sqsubseteq g_1 \sqsubseteq g_2 \sqsubseteq \cdots$

This is why the information order over \mathbb{Z}_{\perp} insists to be boring. It is safe. $g_1 \sqsubseteq g_2$ means that not only g_2 works for more inputs than g_1 , but also since $g_1(0) = 0$, $g_2(0)$ has to agree.

Let \sqsubseteq be a partial order over *D*. Let $x, y \in D$.

A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z'$ and $y \sqsubseteq z'$, then $x \sqcup y \sqsubseteq z'$

When $x \sqcup y$ exists, it is unique (exercise).

Let \sqsubseteq be a partial order over *D*. Let $x, y \in D$.

A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z'$ and $y \sqsubseteq z'$, then $x \sqcup y \sqsubseteq z'$

When $x \sqcup y$ exists, it is unique (exercise).

Example: max for total orders.

Let \sqsubseteq be a partial order over *D*. Let $x, y \in D$.

A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z'$ and $y \sqsubseteq z'$, then $x \sqcup y \sqsubseteq z'$

When $x \sqcup y$ exists, it is unique (exercise).

Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Let \sqsubseteq be a partial order over *D*. Let $x, y \in D$.

A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z'$ and $y \sqsubseteq z'$, then $x \sqcup y \sqsubseteq z'$

When $x \sqcup y$ exists, it is unique (exercise).

Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Counterexample: In \mathbb{Z}_{\perp} , $1 \sqcup 2$ does not exist (no upper bound).

Let \sqsubseteq be a partial order over *D*. Let $x, y \in D$.

A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z'$ and $y \sqsubseteq z'$, then $x \sqcup y \sqsubseteq z'$

When $x \sqcup y$ exists, it is unique (exercise).

Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Counterexample: In \mathbb{Z}_{\perp} , $1 \sqcup 2$ does not exist (no upper bound).

Also possible: Have multiple incomparable upper bounds, so no one is the least.

Let \sqsubseteq be a partial order over *D*. Let $S \subseteq D$.

A join of [the elements of] *S* may exist in *D*, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S$, $x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S$, $x \sqsubseteq z'$), then $\bigsqcup S \sqsubseteq z'$

Let \sqsubseteq be a partial order over *D*. Let $S \subseteq D$.

A join of [the elements of] *S* may exist in *D*, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S$, $x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S$, $x \sqsubseteq z'$), then $\bigsqcup S \sqsubseteq z'$

Example: Arbitrary union in a powerset.

Let \sqsubseteq be a partial order over *D*. Let $S \subseteq D$.

A join of [the elements of] *S* may exist in *D*, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S$, $x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S$, $x \sqsubseteq z'$), then $\bigsqcup S \sqsubseteq z'$

Example: Arbitrary union in a powerset.

Counterexample: For \leq over \mathbb{Q} , { $x \mid x^2 < 2$ } doesn't have a join.

Let \sqsubseteq be a partial order over *D*. Let $S \subseteq D$.

A join of [the elements of] *S* may exist in *D*, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S$, $x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S$, $x \sqsubseteq z'$), then $\bigsqcup S \sqsubseteq z'$

Example: Arbitrary union in a powerset.

Counterexample: For \leq over \mathbb{Q} , { $x \mid x^2 < 2$ } doesn't have a join.

Example: For \leq over \mathbb{R} , $\bigsqcup \{x \mid x^2 < 2\} = \sqrt{2}$.

Let \sqsubseteq be a partial order over *D*. Let $S \subseteq D$.

A join of [the elements of] *S* may exist in *D*, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S$, $x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S$, $x \sqsubseteq z'$), then $\bigsqcup S \sqsubseteq z'$

Example: Arbitrary union in a powerset.

Counterexample: For \leq over \mathbb{Q} , { $x \mid x^2 < 2$ } doesn't have a join.

Example: For \leq over \mathbb{R} , $\bigsqcup \{x \mid x^2 < 2\} = \sqrt{2}$.

Example: $\bigsqcup_{i \in \mathbb{N}} g_i = g$. Join is the "limit" or "union" for modelling recursive programs.

Definition: Partial order \sqsubseteq over *D* is a CPO iff:

- Chains have joins: If S ⊆ D, non-empty, and ⊑ is a total order when restricted to S ("S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written ⊥, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Definition: Partial order \sqsubseteq over *D* is a CPO iff:

- Chains have joins: If S ⊆ D, non-empty, and ⊑ is a total order when restricted to S ("S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written ⊥, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq .

Definition: Partial order \sqsubseteq over *D* is a CPO iff:

- Chains have joins: If S ⊆ D, non-empty, and ⊑ is a total order when restricted to S ("S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written ⊥, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq .

Example: Set of all subgroups of a group, using union for join.

Definition: Partial order \sqsubseteq over *D* is a CPO iff:

- Chains have joins: If S ⊆ D, non-empty, and ⊑ is a total order when restricted to S ("S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written ⊥, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq .

Example: Set of all subgroups of a group, using union for join.

Example: Information order over \mathbb{Z}_{\perp} .

Definition: Partial order \sqsubseteq over *D* is a CPO iff:

- Chains have joins: If S ⊆ D, non-empty, and ⊑ is a total order when restricted to S ("S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written ⊥, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq .

Example: Set of all subgroups of a group, using union for join.

Example: Information order over \mathbb{Z}_{\perp} .

Example: Extending that pointwise to $\mathbb{Z}\to\mathbb{Z}_\perp$ (by theorem on next slide).

Theorem: If \sqsubseteq is a CPO over *D*, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:

Theorem: If \sqsubseteq is a CPO over *D*, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:

Least element: $x \mapsto \bot$.

Theorem: If \sqsubseteq is a CPO over *D*, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:

Least element: $x \mapsto \bot$.

Chains: Given *S* non-empty chain of functions, candidate: $j(x) = \bigsqcup \{ f(x) \mid f \in S \}.$

Theorem: If \sqsubseteq is a CPO over *D*, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:

Least element: $x \mapsto \bot$.

Chains: Given *S* non-empty chain of functions, candidate: $j(x) = \bigsqcup \{ f(x) \mid f \in S \}.$

Check:

 ${f(x) | f \in S} \subseteq D$ is a chain, has join.

j is a least upper bound of S by pointwise extension.

Monotonic And Continuous

Let *D* and *E* have partial orders, both written \sqsubseteq . Let $f: D \rightarrow E$.

Definition: *f* is monotonic iff

for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. "*f* preserves order".

Monotonic And Continuous

Let *D* and *E* have partial orders, both written \sqsubseteq . Let $f: D \rightarrow E$.

Definition: *f* is monotonic iff for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. "*f* preserves order".

Let *D* and *E* be/have CPOs, both orders written \sqsubseteq , both chain joins written \bigsqcup . Let $f: D \rightarrow E$.

Definition: *f* is continuous iff for every chain $S \subseteq D$, $f(\bigsqcup S) = \bigsqcup f(S)$. "*f* preserves chain joins (limits)".

Monotonic And Continuous

Let *D* and *E* have partial orders, both written \sqsubseteq . Let $f: D \rightarrow E$.

Definition: *f* is monotonic iff for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. "*f* preserves order".

Let *D* and *E* be/have CPOs, both orders written \sqsubseteq , both chain joins written \bigsqcup . Let $f: D \rightarrow E$.

Definition: *f* is continuous iff for every chain $S \subseteq D$, $f(\bigsqcup S) = \bigsqcup f(S)$. "*f* preserves chain joins (limits)".

Theorem: Continuous implies monotonic.

Proof: If *f* is continuous: If $x \sqsubseteq y$, then $x \sqcup y = y$, $f(x \sqcup y) = f(y)$. That's a chain join, $f(x \sqcup y) = f(x) \sqcup f(y)$. So $f(x) \sqsubseteq f(x) \sqcup f(y) = f(y)$. *f* is monotonic.

Least Fixed Points of Continuous Functions

Let \sqsubseteq be a CPO over *D*; let *F* : $D \rightarrow D$ be continuous.

Theorem: The equation p = F(p) has a unique least solution ("least fixed point of *F*"): $\bigsqcup_{i \in \mathbb{N}} p_i$ where

$$p_0 = \bot$$
$$p_{i+1} = F(p_i)$$

(Marvelous proof doesn't fit in this margin so next slide.)

Least Fixed Points of Continuous Functions

Proof:

 $p_0 \sqsubseteq p_1 \sqsubseteq p_2 \sqsubseteq \cdots$ by induction and because *F* is monotonic. This is a chain, the join exists.

The join is a fixed point:

$$F(\bigsqcup_{i \in \mathbb{N}} p_i) = \bigsqcup_{i \in \mathbb{N}} F(p_i)$$
$$= \bigsqcup_{i \in \mathbb{N}} p_{i+1}$$
$$= \bot \sqcup \bigsqcup_{i \in \mathbb{N}} p_{i+1}$$
$$= \bigsqcup_{i \in \mathbb{N}} p_i$$

Least: If q = F(q), then $p_i \sqsubseteq q$ by induction, so the join is $\sqsubseteq q$.

Application: Recursive Programs

Define

$$F: (\mathbb{Z} \to \mathbb{Z}_{\perp}) \to (\mathbb{Z} \to \mathbb{Z}_{\perp})$$
$$F(r) = n \mapsto \text{if } n = 0 \text{ then } 0 \text{ else } r(n-2)$$

F is continuous (every programming construct is).

The recursive program is saying g = F(g).

The theorem says that such a g exists and the least is $\bigsqcup_{i \in \mathbb{N}} g_i$ where

$$g_0 = \bot$$
$$g_{i+1} = F(g_i)$$

(日)

18/20

Good Book

Introduction to lattices and order, 2ed, by Davey and Priestley.

If That Was Too Easy

Advanced definition of CPO:

- \blacktriangleright *D* has a least element.
- Directed join: If S ⊆ D, non-empty, every x, y ∈ S have an upper bound in S ("S is a directed subset"), then S has a join.

Example: Set of all subgroups of a group, using union for join.

Easy: If directed joins exist, then chains are directed subsets, so chain joins exist.

Hard: If chain joins exist, then directed joins exist.