Partial orders and application to
 the semantics of computer programs

Albert Lai

July 14, 2021

The Recursive Program Question

In a typical functional programming language:
g : Integer -> Integer
$\mathrm{g}(\mathrm{n})=$ if $\mathrm{n}=0$ then 0 else $\mathrm{g}(\mathrm{n}-2)$
Expect: $g(n)$ is defined for even $n \geq 0$, undefined elsewhere, this is fine.

Want: A mathematical model that gives such predictions.

Solution Ingredient: Permitting Undefinedness

Add \perp ("bottom") to codmain to stand for "no answer":

$$
g: \mathbb{Z} \rightarrow \mathbb{Z} \cup\{\perp\}
$$

E.g., expect $g(3)=\perp$.

Not done today: Also add \perp to domains, more uniform (Integer is always $\mathbb{Z} \cup\{\perp\}$), covers "non-strict" language such as Haskell, but more distracting when today I don't need it.

Fine point: Intuitively non-termination, but want to abstract away from computational steps. So "no answer", "undefined" are better.

Solution Ingredient: Successive Approximations

Construct sequence of functions $g_{0}, g_{1}, g_{2}, \ldots$

$$
\begin{array}{llllllll}
g_{0}(n) & =\perp & (\text { for all } n) \\
g_{i+1}(n) & = & \text { if } n=0 \text { then } 0 & \text { else } g_{i}(n-2) \\
n: & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
& & & \ldots & & & & \\
g_{3}(n): & \perp & 0 & \perp & 0 & \perp & 0 & \perp \\
g_{2}(n): & \perp & 0 & \perp & 0 & \perp & \perp & \perp \\
g_{1}(n): & \perp & 0 & \perp & \perp & \perp & \perp & \perp \\
g_{0}(n): & \perp & \perp & \perp & \perp & \perp & \perp & \perp
\end{array}
$$

Idea: g_{i} approximates the program, as much information (answer) as possible under a quota of recursion depth i.
\perp can also stand for "no information, I don't know [for now]".

Solution Ingredient: Take Limit

$$
g_{i}(n)= \begin{cases}0 & \text { if } 0 \leq n<2 i \text { and } n \text { is even } \\ \perp & 0 / \mathrm{w}\end{cases}
$$

Sequence of increasing definedness. Take limit. Idea: What if unlimited quota of recursion depth.

Define g to be the limit.

$$
g(n)= \begin{cases}0 & \text { if } 0 \leq n \text { and } n \text { is even } \\ \perp & \text { o/w }\end{cases}
$$

Will have to define "limit".

Solution Recipe

In general: For a piece of recursive function code

```
foo : X -> Y
foo(x) = ... foo(x') ...
```

Model as

$$
\text { foo : } X \rightarrow Y \cup\{\perp\} \quad \text { or } X \cup\{\perp\} \rightarrow Y \cup\{\perp\}
$$

Construct sequence of functions

$$
\begin{aligned}
f o o_{0}(x) & =\perp \\
{f o o_{i+1}}(x) & =\ldots \text { foo }_{i}\left(x^{\prime}\right) \ldots
\end{aligned}
$$

Then use the limit for foo.
The rest of the talk is about what is "limit" and why this always works.

Partial Order

Idea: Relax from total order, allow both $\neg(x \sqsubseteq y)$ and $\neg(y \sqsubseteq x)$-" x and y are incomparable".

Axioms:

- reflexive: $x \sqsubseteq x$
- transitive: if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
- antisymmetric: if $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$

Familiar example: \subseteq over a powerset, or really any family of sets.

Information Order

Definition: Information order over $\mathbb{Z} \cup\{\perp\}$ is the smallest relation \sqsubseteq such that: $\perp \sqsubseteq \perp$; and for all $k \in \mathbb{Z}, \perp \sqsubseteq k$ and $k \sqsubseteq k$.
E.g., $0 \not \ddagger 42$ and $42 \not \ddagger 0$.

Idea: $x \sqsubseteq y$ means y has the same or more information (answer) than x.

Boring but there is a reason, and there are ways to build interesting orders.

People write \mathbb{Z}_{\perp} for $\mathbb{Z} \cup\{\perp\}$ when using this information order.

Hasse Diagram

Shows a partial order in a diagram.
If $x \sqsubseteq y, x \neq y$, and nothing in between, draw y higher than x, connect with line segment. Horizontal position unconstrained apart from aesthetics.

Pointwise Function Order

Let X be a set (no required structure).
Let \sqsubseteq be a partial order over D. Can extend pointwise to function space D^{X} but I write $X \rightarrow D$:
$f \sqsubseteq g$ iff $\forall x \in X \cdot f(x) \sqsubseteq g(x)$
Examples: $g_{0} \sqsubseteq g_{1} \sqsubseteq g_{2} \sqsubseteq \cdots$
This is why the information order over \mathbb{Z}_{\perp} insists to be boring. It is safe. $g_{1} \sqsubseteq g_{2}$ means that not only g_{2} works for more inputs than g_{1}, but also since $g_{1}(0)=0, g_{2}(0)$ has to agree.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $x, y \in D$.
A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$, then $x \sqcup y \sqsubseteq z^{\prime}$

When $x \sqcup y$ exists, it is unique (exercise).

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $x, y \in D$.
A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$, then $x \sqcup y \sqsubseteq z^{\prime}$

When $x \sqcup y$ exists, it is unique (exercise).
Example: max for total orders.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $x, y \in D$.
A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$, then $x \sqcup y \sqsubseteq z^{\prime}$

When $x \sqcup y$ exists, it is unique (exercise).
Example: max for total orders.
Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $x, y \in D$.
A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$, then $x \sqcup y \sqsubseteq z^{\prime}$

When $x \sqcup y$ exists, it is unique (exercise).
Example: max for total orders.
Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Counterexample: $\ln \mathbb{Z}_{\perp}, 1 \sqcup 2$ does not exist (no upper bound).

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $x, y \in D$.
A 2-ary join of x and y may exist in $D: x \sqcup y$ such that:

- (upper bound) $x \sqsubseteq x \sqcup y$ and $y \sqsubseteq x \sqcup y$
- (least) if $x \sqsubseteq z^{\prime}$ and $y \sqsubseteq z^{\prime}$, then $x \sqcup y \sqsubseteq z^{\prime}$

When $x \sqcup y$ exists, it is unique (exercise).
Example: max for total orders.
Example: 2-ary union in a family of sets closed under 2-ary union. For a non-total order, the join can be different from both operands.

Counterexample: $\ln \mathbb{Z}_{\perp}, 1 \sqcup 2$ does not exist (no upper bound).
Also possible: Have multiple incomparable upper bounds, so no one is the least.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $S \subseteq D$.
A join of [the elements of] S may exist in D, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S, x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S, x \sqsubseteq z^{\prime}$), then $\bigsqcup S \sqsubseteq z^{\prime}$

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $S \subseteq D$.
A join of [the elements of] S may exist in D, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S, x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S, x \sqsubseteq z^{\prime}$), then $\bigsqcup S \sqsubseteq z^{\prime}$

Example: Arbitrary union in a powerset.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $S \subseteq D$.
A join of [the elements of] S may exist in D, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S, x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S, x \sqsubseteq z^{\prime}$), then $\bigsqcup S \sqsubseteq z^{\prime}$

Example: Arbitrary union in a powerset.
Counterexample: For \leq over $\mathbb{Q},\left\{x \mid x^{2}<2\right\}$ doesn't have a join.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $S \subseteq D$.
A join of [the elements of] S may exist in D, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S, x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S, x \sqsubseteq z^{\prime}$), then $\bigsqcup S \sqsubseteq z^{\prime}$

Example: Arbitrary union in a powerset.
Counterexample: For \leq over $\mathbb{Q},\left\{x \mid x^{2}<2\right\}$ doesn't have a join.
Example: For \leq over $\mathbb{R}, ~ \bigsqcup\left\{x \mid x^{2}<2\right\}=\sqrt{2}$.

Join (Least Upper Bound)

Let \sqsubseteq be a partial order over D. Let $S \subseteq D$.
A join of [the elements of] S may exist in D, written $\bigsqcup S$. When it exists, it is unique (exercise). Indexed notation: $\bigsqcup_{i \in I} F(i)$

- (upper bound) for all $x \in S, x \sqsubseteq \bigsqcup S$
- (least) if (for all $x \in S, x \sqsubseteq z^{\prime}$), then $\bigsqcup S \sqsubseteq z^{\prime}$

Example: Arbitrary union in a powerset.
Counterexample: For \leq over $\mathbb{Q},\left\{x \mid x^{2}<2\right\}$ doesn't have a join.
Example: For \leq over $\mathbb{R}, ~ \bigsqcup\left\{x \mid x^{2}<2\right\}=\sqrt{2}$.
Example: $\bigsqcup_{i \in \mathbb{N}} g_{i}=g$. Join is the "limit" or "union" for modelling recursive programs.

Complete Partial Order (CPO)

Definition: Partial order \sqsubseteq over D is a CPO iff:

- Chains have joins: If $S \subseteq D$, non-empty, and \sqsubseteq is a total order when restricted to S (" S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written \perp, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Complete Partial Order (CPO)

Definition: Partial order \sqsubseteq over D is a CPO iff:

- Chains have joins: If $S \subseteq D$, non-empty, and \sqsubseteq is a total order when restricted to S (" S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written \perp, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq.

Complete Partial Order (CPO)

Definition: Partial order \sqsubseteq over D is a CPO iff:

- Chains have joins: If $S \subseteq D$, non-empty, and \sqsubseteq is a total order when restricted to S (" S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written \perp, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq.
Example: Set of all subgroups of a group, using union for join.

Complete Partial Order (CPO)

Definition: Partial order \sqsubseteq over D is a CPO iff:

- Chains have joins: If $S \subseteq D$, non-empty, and \sqsubseteq is a total order when restricted to S (" S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written \perp, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq.
Example: Set of all subgroups of a group, using union for join.
Example: Information order over \mathbb{Z}_{\perp}.

Complete Partial Order (CPO)

Definition: Partial order \sqsubseteq over D is a CPO iff:

- Chains have joins: If $S \subseteq D$, non-empty, and \sqsubseteq is a total order when restricted to S (" S is a chain"), then S has a join.
- D has a least element (exercise: it is unique). Join of the empty set. Usually written \perp, called "bottom".

Some people don't require a least element, and say "pointed CPO" when it exists.

Example: Powerset and \subseteq.
Example: Set of all subgroups of a group, using union for join.
Example: Information order over \mathbb{Z}_{\perp}.
Example: Extending that pointwise to $\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}$ (by theorem on next slide).

Pointwise CPO on Functions

Theorem: If \sqsubseteq is a CPO over D, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:

Pointwise CPO on Functions

Theorem: If \sqsubseteq is a CPO over D, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:
Least element: $x \mapsto \perp$.

Pointwise CPO on Functions

Theorem: If \sqsubseteq is a CPO over D, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:
Least element: $x \mapsto \perp$.
Chains: Given S non-empty chain of functions, candidate:
$j(x)=\bigsqcup\{f(x) \mid f \in S\}$.

Pointwise CPO on Functions

Theorem: If \sqsubseteq is a CPO over D, then its pointwise extension to $X \rightarrow D$ is a CPO.

Proof:
Least element: $x \mapsto \perp$.
Chains: Given S non-empty chain of functions, candidate:
$j(x)=\bigsqcup\{f(x) \mid f \in S\}$.
Check:
$\{f(x) \mid f \in S\} \subseteq D$ is a chain, has join.
j is a least upper bound of S by pointwise extension.

Monotonic And Continuous

Let D and E have partial orders, both written \sqsubseteq. Let $f: D \rightarrow E$.
Definition: f is monotonic iff for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. " f preserves order".

Monotonic And Continuous

Let D and E have partial orders, both written \sqsubseteq. Let $f: D \rightarrow E$.
Definition: f is monotonic iff for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. " f preserves order".

Let D and E be/have CPOs, both orders written \sqsubseteq, both chain joins written \sqcup. Let $f: D \rightarrow E$.

Definition: f is continuous iff for every chain $S \subseteq D, f(\sqcup S)=\bigsqcup f(S)$. " f preserves chain joins (limits)".

Monotonic And Continuous

Let D and E have partial orders, both written \sqsubseteq. Let $f: D \rightarrow E$.
Definition: f is monotonic iff for all $x, y \in D$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. " f preserves order".

Let D and E be/have CPOs, both orders written \sqsubseteq, both chain joins written \sqcup. Let $f: D \rightarrow E$.

Definition: f is continuous iff for every chain $S \subseteq D, f(\sqcup S)=\bigsqcup f(S)$. " f preserves chain joins (limits)".

Theorem: Continuous implies monotonic.
Proof: If f is continuous:
If $x \sqsubseteq y$, then $x \sqcup y=y, f(x \sqcup y)=f(y)$.
That's a chain join, $f(x \sqcup y)=f(x) \sqcup f(y)$.
So $f(x) \sqsubseteq f(x) \sqcup f(y)=f(y)$. f is monotonic.

Least Fixed Points of Continuous Functions

Let \sqsubseteq be a CPO over D; let $F: D \rightarrow D$ be continuous.
Theorem: The equation $p=F(p)$ has a unique least solution ("least fixed point of $F^{\prime \prime}$): $\bigsqcup_{i \in \mathbb{N}} p_{i}$ where

$$
\begin{aligned}
p_{0} & =\perp \\
p_{i+1} & =F\left(p_{i}\right)
\end{aligned}
$$

(Marvelous proof doesn't fit in this margin so next slide.)

Least Fixed Points of Continuous Functions

Proof:

$p_{0} \sqsubseteq p_{1} \sqsubseteq p_{2} \sqsubseteq \cdots$ by induction and because F is monotonic. This is a chain, the join exists.

The join is a fixed point:

$$
\begin{aligned}
F\left(\bigsqcup_{i \in \mathbb{N}} p_{i}\right) & =\bigsqcup_{i \in \mathbb{N}} F\left(p_{i}\right) \\
& =\bigsqcup_{i \in \mathbb{N}} p_{i+1} \\
& =\perp \sqcup \bigsqcup_{i \in \mathbb{N}} p_{i+1} \\
& =\bigsqcup_{i \in \mathbb{N}} p_{i}
\end{aligned}
$$

Least: If $q=F(q)$, then $p_{i} \sqsubseteq q$ by induction, so the join is $\sqsubseteq q$.

Application: Recursive Programs

Define

$$
\begin{gathered}
F:\left(\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}\right) \rightarrow\left(\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}\right) \\
F(r)=n \mapsto \text { if } n=0 \text { then } 0 \text { else } r(n-2)
\end{gathered}
$$

F is continuous (every programming construct is).
The recursive program is saying $g=F(g)$.
The theorem says that such a g exists and the least is $\bigsqcup_{i \in \mathbb{N}} g_{i}$ where

$$
\begin{aligned}
g_{0} & =\perp \\
g_{i+1} & =F\left(g_{i}\right)
\end{aligned}
$$

Good Book

Introduction to lattices and order, 2ed, by Davey and Priestley.

If That Was Too Easy

Advanced definition of CPO:

- D has a least element.
- Directed join: If $S \subseteq D$, non-empty, every $x, y \in S$ have an upper bound in S (" S is a directed subset"), then S has a join.

Example: Set of all subgroups of a group, using union for join.
Easy: If directed joins exist, then chains are directed subsets, so chain joins exist.

Hard: If chain joins exist, then directed joins exist.

