1 Arithmetic Expressions

Question 1.1 (Putnam and Beyond, p89 \#267). With the aid of a calculator that can add, subtract, and determine the inverse of a nonzero number, show that you can find the product of any two real numbers. Bonus: Can you do it with at most 20 operations?

Question 1.2 (24 Puzzle). Find an expression that equals 24 and uses each of $1,4,5,6$ exactly once. You may use the operators $+,-, \cdot, \div$ any number of times.

2 Recursively Defined Sets

Question 2.1 (Putnam 2012, B1). Let S be a set of functions from $[0, \infty)$ to $[0, \infty)$ that satisfies:
(i) The functions $f_{1}(x)=e^{x}-1$ and $f_{2}(x)=\ln (x+1)$ are in S;
(ii) If $f(x)$ and $g(x)$ are in S, the functions $f(x)+g(x)$ and $f(g(x))$ are in S;
(iii) If $f(x)$ and $g(x)$ are in S and $f(x) \geq g(x)$ for all $x \geq 0$, then the function $f(x)-g(x)$ is in S.
Prove that if $f(x)$ and $g(x)$ are in S, then the function $f(x) g(x)$ is in S.
Question 2.2 (Putnam 2017, A1). Let S be the smallest set of positive integers such that
(i) 2 is in S;
(ii) n is in S whenever n^{2} is in S;
(iii) $(n+5)^{2}$ is in S whenever n is in S.

Which positive integers are not in S ?
Question 2.3 (Course Notes for CSC B36, Thm 4.2). Let \mathcal{S} be a set, B be a subset of \mathcal{S}, and $f: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ be an operator on \mathcal{S}. Prove that there is a unique subset S of \mathcal{S} such that:
(i) S contains B;
(ii) S is closed under f;
(iii) Any subset of \mathcal{S} that contains B and is closed under f contains S.

