| What Does The $\sin (x)$ Button Do? |
| :---: |

Name: $\qquad$

## Goals for This Workshop

- Explain how the $\sin (x)$ button on a calculator calculates sine of $x$.
- Create "designer" polynomials.
- Learn about univeristy mathematics.


## What Does The Calculator Do?

Q1. Get out a calculator and calculate $\sin (1.2)$ where 1.2 is measured in radians.
(Note: If you get $\sin (1.2) \approx 0.0209$ then your calculator is in degrees mode.)
$\qquad$
$\sin (1.2) \approx$

Q2. What do you think your calculator does when it calculates $\sin (x)$ ? How does it do it?

## Designer Polynomials

Q3. Consider the polynomial $p(x)=2+\frac{2}{1 \cdot 2} x^{2}+\frac{4}{1 \cdot 2 \cdot 3} x^{3}$.
These fractions are left "uncancelled" and "unmultiplied" for a good reason: to help spot patterns. Evaluate the following:
(a) $p(0)=$ $\qquad$
(b) $p^{\prime}(0)=$ $\qquad$
(c) $p^{\prime \prime}(0)=$ $\qquad$
(d) $p^{(3)}(0)=$ $\qquad$ $\longleftarrow$ This $p^{(3)}(x)$ is the third derivative of $p(x)$.
Q4. If you wanted a polynomial $p(x)$ so that $p^{(n)}(0)=C$ and $p^{(k)}(0)=0$ for $k \neq n$.
To put it another way: the $n$ 'th derivative of $p(x)$ is $C$ and all other derivatives are zero. How would you build it? What is the formula for $p(x)$ ?

$$
p(x)=
$$

$\qquad$
Suggestion: If this question is too abstract, pick your favourite numbers $n$ and $C$.

## The Sine Function

Q5. Consider the function $f(x)=\sin (x)$. Calculate the first few derivatives $f^{(n)}(0)$.
(a) $f^{\prime}(x)=$ $\qquad$ $f^{\prime}(0)=$ $\qquad$
(b) $f^{\prime \prime}(x)=$ $\qquad$ $f^{\prime \prime}(0)=$
(c) $f^{(3)}(x)=$ $\qquad$ $f^{(3)}(0)=$ $\qquad$
(d) $f^{(4)}(x)=$ $\qquad$ $f^{(4)}(0)=$ $\qquad$
Q6. Do you notice any pattern in the values of the $n$ 'th derivative of $\sin (x)$ at $x=0$ ?

Let $f(x)=\sin (x)$. If $n=2 k+1$ is odd then $f^{(n)}(0)=$ $\qquad$ .

And now we have all the pieces that we need for the Big Idea. Suppose that two functions $f(x)$ and $p(x)$ have same value at $x=0$. That is: $f(0)=p(0)$. Furthermore, suppose that their first derivatives agree at $x=0$. As a formula: $f^{\prime}(0)=p^{\prime}(0)$. Let's go really wild and suppose that $f^{(n)}(0)=p^{(n)}(0)$ for all $n$. These functions will be very similar: $p(x)$ will approximate $f(x)$.

Q7. Let $f(x)=\sin (x)$ as above. Use Q4 and Q6 to design a polynomial $p(x)$ of degree seven so that:

$$
f^{(n)}(0)=p^{(n)}(0) \text { for all } n \leq 7
$$

Put your answer here:
$p(x)=$
$x+$
$x^{2}+$
$x^{3}+$
$x^{4}+\ldots \quad x^{5}$
$x^{5}+$
$x^{6}+$
$x^{7}$

Q8. Use your polynomial from Q7 to estimate $\sin (1.2)$ and compare it with your answer from Q1. $p(1.2) \approx$ $\qquad$

$$
\sin (1.2) \approx
$$

$\qquad$

Q9. What is the calculator doing when you hit $\sin (x)$ ?

## Q10. Further Exploration

(a) Use Desmos to plot a polynomial of degree $N$ that approximates $\sin (x)$. You will want to type sum to get a summation sign $\sum_{n=0}$ and $n!$ for the factorial $n!=1 \cdot 2 \cdot 3 \cdots(n-1) n$.
(b) Can you do this polynomial approximation method for other functions? How about $\cos (x)$ ? Or $e^{x}$ ?

## Page 2

Feel free to ask me about mathematics / calculus / university: parker.glynn.adey@utoronto.ca

