What Does The sin(x) Button Do?

Name: _

Goals for This Workshop

- Explain how the sin(x) button on a calculator calculates sine of x.
- Create "designer" polynomials.
- Learn about university mathematics.

What Does The Calculator Do?

Q1. Get out a calculator and calculate $\sin(1.2)$ where 1.2 is measured in radians. (Note: If you get $\sin(1.2) \approx 0.0209$ then your calculator is in degrees mode.)

 $\sin(1.2) \approx$

Q2. What do you think your calculator does when it calculates sin(x)? How does it do it?

Designer Polynomials

- Q3. Consider the polynomial $p(x) = 2 + \frac{2}{1 \cdot 2}x^2 + \frac{4}{1 \cdot 2 \cdot 3}x^3$. These fractions are left "uncancelled" and "unmultiplied" for a good reason: to help spot patterns. Evaluate the following:
 - (a) p(0) =_____
 - (b) p'(0) =
 - (c) p''(0) =_____
 - (d) $p^{(3)}(0) =$ _____ \leftarrow This $p^{(3)}(x)$ is the third derivative of p(x).
- Q4. If you wanted a polynomial p(x) so that $p^{(n)}(0) = C$ and $p^{(k)}(0) = 0$ for $k \neq n$. To put it another way: the *n*'th derivative of p(x) is *C* and all other derivatives are zero. How would you build it? What is the formula for p(x)?

p(x) =_____

Suggestion: If this question is too abstract, pick your favourite numbers n and C.

The Sine Function

- Q5. Consider the function $f(x) = \sin(x)$. Calculate the first few derivatives $f^{(n)}(0)$.
 - (a) f'(x) =_____
 f'(0) =_____

 (b) f''(x) =_____
 f''(0) =_____

 (c) $f^{(3)}(x) =$ _____
 $f^{(3)}(0) =$ _____

 (d) $f^{(4)}(x) =$ _____
 $f^{(4)}(0) =$ _____
- Q6. Do you notice any pattern in the values of the n'th derivative of sin(x) at x = 0?

Let $f(x) = \sin(x)$. If n = 2k + 1 is odd then $f^{(n)}(0) =$ ______

And now we have all the pieces that we need for the Big Idea. Suppose that two functions f(x) and p(x) have same value at x = 0. That is: f(0) = p(0). Furthermore, suppose that their first derivatives agree at x = 0. As a formula: f'(0) = p'(0). Let's go really wild and suppose that $f^{(n)}(0) = p^{(n)}(0)$ for all n. These functions will be *very* similar: p(x) will approximate f(x).

Q7. Let $f(x) = \sin(x)$ as above. Use Q4 and Q6 to design a polynomial p(x) of degree seven so that:

$$f^{(n)}(0) = p^{(n)}(0)$$
 for all $n \le 7$.

Put your answer here:

 $p(x) = ___+__x + ___x^2 + __x^3 + __x^4 + __x^5 + __x^5 + __x^6 + __x^7$

Q8. Use your polynomial from Q7 to estimate sin(1.2) and compare it with your answer from Q1.

 $p(1.2) \approx _$

 $\sin(1.2) \approx$

Q9. What is the calculator doing when you hit sin(x)?

Q10. Further Exploration

- (a) Use Desmos to plot a polynomial of degree N that approximates $\sin(x)$. You will want to type sum to get a summation sign $\sum_{n=1}^{\infty}$ and n! for the factorial $n! = 1 \cdot 2 \cdot 3 \cdots (n-1)n$.
- (b) Can you do this polynomial approximation method for other functions? How about $\cos(x)$? Or e^x ?

Page 2

Feel free to ask me about mathematics / calculus / university: parker.glynn.adey@utoronto.ca